Microstructures and electrical properties of Mn/Co/Ni-doped BaBiO3 perovskite-type NTC ceramic systems

  • Jing-Jing Qu
  • Xv-Qiong LiEmail author
  • Fei LiuEmail author
  • Chang-Lai Yuan
  • Xiao Liu
  • Hui-Wang Ning
  • Hai-Lin Li


Mn/Co/Ni-modified BaBiO3-based negative temperature coefficient (NTC) ceramics with the formula, x[(3-y-z)Mn/yCo/zNi-ions]+(1−x)BaBiO3 (x = 0.0–0.4, y = 0.96 and z = 0.48), were synthesized using a conventional solid state reaction. The effects of Mn/Co/Ni-substitute content on the phase structures and composition, microstructures and electrical properties were characterized by X-ray diffraction (XRD), scanning electron microscope and resistance–temperature measurements, respectively. XRD pattern analysis results revealed that the compound phases consisted of a main monoclinal BaBiO3 phase and a secondary phase of Ba(Mn, Co, Ni)O3 solid-solution with a hexagonal structure, which were detected at x = 0.05–0.2. In addition, according to the XRD patterns, the main phase changed from BaBiO3 to a rhombohedral Bi8.11Ba0.89O13.05 phase at x = 0.3, and this phase content increased dramatically as the x value increased to 0.4. For the related electrical properties, all of the samples demonstrated the typical characteristics of NTC thermistors across a relatively wide range of temperatures. The values obtained for B constant (B25/85) and the room-temperature resistivity (ρ25) were in the range of 2297–5235 K and 760 Ω cm−1, 620 kΩ cm, respectively, which implied that the electrical properties of the present ceramic systems could be optimized via various substitutions in the Mn/Co/Ni-ions content. The variable values of ρ25 were affected strongly by the changes in crystal structure and the decrease in charge carrier concentration. These composite ceramic materials are suitable candidates for a variety of NTC thermistor applications due to their widely adjustable electrical properties.



Financial support from the National Natural Science Foundation of China (Grants Nos. 51462005 and 61561011) is gratefully acknowledged by the authors.


  1. 1.
    H. Han, S. Mhin, K.R. Park, K.M. Kim, J.I. Lee, J.H. Ryu, Fe doped Ni-Mn-Co-O ceramics with varying Fe content as negative temperature coefficient sensors. Ceram. Int. 43, 10528–10532 (2017)CrossRefGoogle Scholar
  2. 2.
    G. Na, Y.D. Li, Effects of Cd and Cd–Cu doping on the microstructure and electrical properties of NiMnCoO NTC ceramics, Adv. Mater. Res. 1632, 236–238 (2011)Google Scholar
  3. 3.
    A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)CrossRefGoogle Scholar
  4. 4.
    E. Rios, J.L. Gautier, G. Poillerat, P. Chartier, Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3–xO4 system. Electrochim. Acta 44, 1491–1497 (1998)CrossRefGoogle Scholar
  5. 5.
    C. Peng, H. Zhang, A. Chang, F. Guan, B. Zhang, P. Zhao, Effect of Mg substitution on microstructure and electrical properties of Mn1.25Ni0.75Co1.0–xMgxO4 (0 ≤ x ≤ 1) NTC ceramics. J. Mater. Sci.: Mater. Electron. 23, 851 (2012)Google Scholar
  6. 6.
    K. Park, J.K. Lee, The effect of ZnO content and sintering temperature on the electrical properties of Cu-containing Mn1.95–xNi0.45Co0.15Cu0.45ZnxO4 (0 ≤ x ≤ 0.3) NTC thermistors. J. Alloys Compd. 475, 513–517 (2009)CrossRefGoogle Scholar
  7. 7.
    S.A. Kanade, V. Puri, Electrical properties of thick-film NTC thermistor composed of Ni0.8Co0.2Mn2O4 ceramic: effect of inorganic oxide binder. Mater. Res. Bull 43, 819–824 (2008)CrossRefGoogle Scholar
  8. 8.
    A.V. Salker, S.M. Gurav, Electronic and catalytic studies on Co1–xCuxMn2O4 for CO oxidation. J. Mater. Sci. 35, 4713–4719 (2000)CrossRefGoogle Scholar
  9. 9.
    Z.B. Wang, C.H. Zhao, P.H. Yang, A.J.A. Winnubst, C.S. Chen, X-ray diffraction and infrared spectra studies of FexMn2.34–xNi0.66O4 (0 < x < 1) NTC ceramics. J. Eur. Ceram. Soc. 26, 2833–2837 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Mhin, H. Han, D. Kim, S. Yeo, J.I. Lee, J.H. Ryu, Phase evolution of (Ni, Co, Mn)O4 during heat treatment with high temperature in situ X-ray diffraction. Ceram. Int. 42, 5412–5417 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Han, J.S. Lee, J.H. Ryu, K.M. Kim, J.L. Jones, J. Lim, S. Guillemet-Fritsch, H.C. Lee, S. Mhin, Effect of high cobalt concentration on hopping motion in cobalt manganese spinel oxide (CoxMn3–xO4, x ≥ 2.3). J. Phys. Chem. C 120, 13667–13674 (2016)CrossRefGoogle Scholar
  12. 12.
    M.Y. Guan, J.C. Yao, W.W. Kong, J.H. Wang, A.M. Chang, Effects of Zn-doped on the microstructure and electrical properties of Mn1.5–xCo1.2Cu0.3ZnxO4 (0 ≤ x ≤ 0.5) NTC ceramics. J. Mater. Sci.: Mater. Electron. 29, 5082–5086 (2018)Google Scholar
  13. 13.
    R. Dannenberg, S. Baliga, R.J. Gambino, A.H. King, A.P. Doctor, Resistivity, thermopower and the correlation to infrared active vibrations of Mn1.56Co0.96Ni0.48O4 spinel films sputtered in an oxygen partial pressure series. J. Appl. Phys. 86, 514–523 (1999)CrossRefGoogle Scholar
  14. 14.
    Y.Q. Gao, Z.M. Huang, Y. Hou, J. Wu, W. Zhou, C. OuYang, J.G. Huang, J.C. Tong, J.H. Chu, Structural and electrical properties of Mn1.56Co0.96Ni0.48O4 NTC thermistor films. Mat. Sci. Eng. B. 185, 74–78 (2014)CrossRefGoogle Scholar
  15. 15.
    W.W. Kong, H.J. Bu, B. Gao, L. Chen, F. Cheng, P.J. Zhao, G. Ji, A.M. Chang, C.P. Jiang, Effects of preferred orientation on electrical properties of Mn1.56Co0.96Ni0.48O4 ± δ spinel films. Mater. Lett 137, 36–40 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Schmidt, A. Basu, A.W. Brinkman, Z. Klusek, P.K. Datta, Electron-hopping modes in NiMn2O4+δ materials. Appl. Phys. Lett. 86, 073501 (2005)CrossRefGoogle Scholar
  17. 17.
    H.M. Zhang, A.M. Chang, C.W. Peng, Preparation and characterization of Fe3+-doped Ni0.9Co0.8Mn1.3–xFexO4 (0 ≤ x ≤ 0.7) negative temperature coefficient ceramic materials. Microelectron. Eng 88, 2934–2940 (2011)CrossRefGoogle Scholar
  18. 18.
    J. Guo, H. Zhang, Z.L. He, S.H. Li, Z.C. Li, Electrical properties and temperature sensitivity of Mo-modified MnFe2O4 ceramics for application of NTC thermistors. J. Mater. Sci. 29, 2491–2499 (2018)Google Scholar
  19. 19.
    C.J. Ma, H. Gao, Preparation and characterization of single-phase NiMn2O4 NTC ceramics by two-step sintering method. J. Mater. Sci. 28, 6699–6703 (2017)Google Scholar
  20. 20.
    C.P. Huang, L. Chen, Q.A. Zhang, S.N. Chang, B. Zhang, A.M. Chang, H.M. Zhang, Preparation and characterization of LaMn0.5Co0.5O3-Ni0.66Mn2.34O4 composite NTC ceramics. J. Mater. Sci. 27, 7560–7565 (2016)Google Scholar
  21. 21.
    C.J. Ma, Y.F. Liu, Y.N. Lu, H. Qian, Preparation and electrical properties of Ni0.6Mn2.4–xTixO4 NTC ceramics. J. Alloys Compd. 650, 931–935 (2015)CrossRefGoogle Scholar
  22. 22.
    B. Zhang, Q. Zhao, A.M. Chang, X. Huang, J. Hou, P.J. Zhao, G. Ji, La2O3-doped 0.6Y2O3 − 0.4YCr0.5Mn0.5O3 composite NTC ceramics for wide range of temperature sensing. J. Alloys Compd. 581, 573–578 (2013)CrossRefGoogle Scholar
  23. 23.
    Z.Y. Guo, J.M. Shao, H. Lin, M.D. Jiang, S.Y. Chen, Z.C. Li, Electrical conductivity and temperature sensitivity of ceramics based on NiO simple oxides for NTC applications. J. Mater. Sci. 28, 11871–11877 (2017)Google Scholar
  24. 24.
    B. Zhang, Q. Zhao, C.J. Zhao, A.M. Chang, Comparison of structure and electrical properties of vacuum-sintered and conventional-sintered Ca1–xYxCeNbWO8 NTC ceramics. J. Alloys Compd. 698, 1–6 (2017)CrossRefGoogle Scholar
  25. 25.
    X.Q. Li, Y. Luo, X.Y. Liu, Preparation and electrical properties of perovskite ceramics in the system BaBi1–xSbxO3 (0 ≤ x ≤ 0.5). J. Alloys Compd. 509, 5373–5375 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Luo, X.Y. Liu, X.Q. Li, Electrical properties of BaTiO3-based NTC thermistors doped by BaBiO3 and La2O3. J. Mater. Sci. 17, 909–913 (2006)Google Scholar
  27. 27.
    Y. Luo, X.Y. Liu, G.H. Chen, Effect of Y2O3 addition on the electrical properties of BaTiO3-based NTC thermistors. Mater. Lett 60, 1011 (2006)CrossRefGoogle Scholar
  28. 28.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  29. 29.
    M. Nagoshi, T. Suzuki, Y. Fukuda, K. Ueki, A. Tokiwa, M. Kiruchi, Y. Syono, M. Tachiki, Electronic states of BaBiO3- delta and K-doping effects studied by photoelectron spectroscopy. J. Phys.: Condens. Matter. 4(26), 5769 (1992)Google Scholar
  30. 30.
    Z.N. Akhtar, M.J. Akhtar, C.R.A. Catlow, X-ray absorption near-edge studies of BaBiO3, BaBi1–xPbxO3 and Ba1–xKxBiO3 systems. J. Phys. 5, 2643 (1992)Google Scholar
  31. 31.
    H. Han, H. Lee, J. Lim, K.M. Kim, Y.R. Hong, J. Lee, J. Forrester, J.H. Ryu, S. Mhin, Hopping conduction in (Ni, Co, Mn)O4 prepared by different synthetic routes: conventional and spark plasma sintering. Ceram. Int. 43, 16070–16075 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Park, D.Y. Bang, Electrical properties of Ni–Mn–Co–(Fe) oxide thick-film NTC thermistors prepared by screen printing. J. Mater. Sci. 14(2), 81–87 (2003)Google Scholar
  33. 33.
    K. Park, S.J. Yun, Influence of the composition on the electrical properties of (Mn2.1–xNi0.9Six)O4 negative temperature coefficient thermistors. J. Mater. Sci. 15, 359–362 (2004)Google Scholar
  34. 34.
    K. Park, J.K. Lee, Mn-Ni-Co-Cu-Zn-O NTC thermistors with high thermal stability for low resistance applications. Scr. Mater 57, 329–332 (2007)CrossRefGoogle Scholar
  35. 35.
    P. Umadevi, C.L. Nagendra, Preparation and characterisation of transition metal oxide micro-thermistors and their application to immersed thermistor bolometer infrared detectors. Sens. Actuators A 96, 114–124 (2002)CrossRefGoogle Scholar
  36. 36.
    C.J. Ma, Y.F. Liu, Y.N. Lu, Preparation routes and electrical properties for Ni0.6Mn2.4O4 NTC ceramics. J. Mater. Sci. 26, 7238 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  3. 3.Department of Computer Science and EngineeringGuilin University of Aerospace TechnologyGuilinPeople’s Republic of China

Personalised recommendations