Skip to main content
Log in

Comprehensive and multifaceted conductive mechanisms of Mn doped BaBiO3-based ceramic NTC thermistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Mn3+-ions doped Ba(MnxBi1−x)O3 (x = 0.0, 0.02, 0.04, 0.06, 0.08 and 0.1) ceramic block samples are prepared by traditional solid-state method. The phase structures of these ceramic systems are analyzed, in which the XRD analysis results show the ceramic systems can be formed the solid solutions as the relatively lower Mn-adding content of x ≤ 0.4, and the ceramic blocks appear the additional diffraction peak belonging to the MnO2 second phase with the increase of x value (≥ 0.6). Combined with the acceptor atom-doping conduction model theory and XPS analysis results, the main conductive forms of these Ba(MnxBi1−x)O3 thermistors include in the following three kinds: the movable holes formed by the acceptor Mn-doping, the 2Bi4+ → Bi3+ + Bi5+ disproportionation reaction, and the [Mn3+/Mn4+] small polaron jump. For the electrical properties test results, the NTC thermal properties for the x = 0.02 and x = 0.06 samples are relatively superior: ρ25 − 690 Ω cm, B25/85 − 3150 K and ρ25 ~ 940 Ω cm, B25/85 − 3080 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. C. Peng, H. Zhang, A. Chang, F. Guan, B. Zhang, P. Zhao, Effect of mg substitution on microstructure and electrical properties of Mn1.25Ni0.75Co1.0–xMgxO4 (0 ≤ x ≤ 1) NTC ceramics. J. Mater. Sci.: Mater. Electron. 23, 851 (2012)

    CAS  Google Scholar 

  2. Z.B. Wang, C.H. Zhao, P.H. Yang, A.J.A. Winnubst, C.S. Chen, X-ray diffraction and infrared spectra studies of FexMn2.34–xNi0.66O4 (0 < x < 1) NTC ceramics. J. Eur. Ceram. Soc. 26, 2833–2837 (2006)

    Article  CAS  Google Scholar 

  3. Z.B. Wang, Z.B. Li, Y. Zhang, R.Y. Zhang, P. Qin, C.N. Chen, L. Winnubst, Preparation and electrical properties of Ni0.6Mn2.4–xSnxO4 NTC ceramics. Ceram. Int. 40(3), 4875–4878 (2014)

    Article  CAS  Google Scholar 

  4. M.X. Chen, H.M. Zhang, T. Liu, H. Jiang, A.M. Chang, Preparation, structure and electrical properties of La1–xBaxCrO3 NTC ceramics. J. Mater. Sci.: Mater. Electron. 28, 18873–18878 (2017)

    CAS  Google Scholar 

  5. F. Guan, Z.W. Dang, X. Cheng, W.P. Liao, La1–xCaxMnO3 NTC ceramics for low temperature thermistors with high stability. J. Phys. Chem. Solids 174, 111120 (2023)

    Article  CAS  Google Scholar 

  6. J.J. Qu, X.Q. Li, F. Liu, C.L. Yuan, X. Liu, H.W. Ning, H.L. Li, Microstructures and electrical properties of Mn/Co/Ni-doped BaBiO3 perovskite-type NTC ceramic systems. J. Mater. Sci.: Mater. Electron. 30, 4688–4695 (2019)

    CAS  Google Scholar 

  7. D.S. Shtarev, A.V. Shtareva, R. Kevorkyants, M. Molokeev, Serpone. revisiting the BaBiO3 semiconductor photocatalyst: synthesis, characterization, electronic structure, and photocatalytic activity. Photoch. Photobio. Sci 20, 1147–1160 (2021)

    Article  CAS  Google Scholar 

  8. D. Korotin, V. Kukolev, A. Kozhevnikov, D. Novoselov, V. Anisimov, Electronic correlations and crystal structure distortions in BaBiO3. J. Phys.: Condens. Matter 24, 415603 (2012)

    Google Scholar 

  9. H.B. Li, H.M. Zhang, S. Thayil, A.M. Chang, X. Sang, X.H. Ma, Enhanced aging and thermal shock performance of Mn1.95–xCo0.21Ni0.84SrxO4 NTC ceramics. J. Adv. Ceram. 10(2), 258–271 (2021)

    Article  Google Scholar 

  10. C. Zhao, B. Wang, P. Yang, L. Winnubst, C. Chen, Effects of Cu and Zn co-doping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics. J. Eur. Ceram. Soc. 28, 35–40 (2008)

    Article  CAS  Google Scholar 

  11. C. Teichmann, J. Töpfer, Sintering and electrical properties of Cu-substituted Zn-Co-Ni-Mn spinel ceramics for NTC thermistors thick films. J. Eur. Ceram. Soc. 42(5), 2261–2267 (2022)

    Article  CAS  Google Scholar 

  12. F. Guan, Z.W. Dang, S.F. Huang, J.R. Wang, I. Milisavljevic, D. Carloni, X. Cheng, Y.Q. Wu, LaCr1–xFexO3 (0 ≤ x ≤ 0.7): a novel NTC ceramic with high stability. J. Eur. Ceram. Soc. 40(15), 5597–5601 (2020)

    Article  CAS  Google Scholar 

  13. X.H. Ma, H.M. Zhang, H.B. Li, P.F. Ma, H. Jiang, A.M. Chang, Structural and electrical properties of Ca-doped Co1.5–xCaxMn1.2Ni0.3O4 (0 ≤ x ≤ 0.8) NTC ceramics. J. Mater. Sci.: Mater. Electron. 32(5), 5849–5858 (2021)

    CAS  Google Scholar 

  14. X. Sun, H. Zhang, Y. Liu, J. Guo, Z.C. Li, Characterization of new negative temperature coefficient thermistors based on Zn-Ni-O system. J. Adv. Ceram. 5(4), 329–336 (2016)

    Article  CAS  Google Scholar 

  15. H.M. Zhang, A.M. Chang, C.W. Peng, Preparation and characterization of Fe3+ doped Ni0.9Co0.8Mn1.3–xFexO4 (0 ≤ x ≤ 0.7) negative temperature coefficient ceramic materials. Microelectron. Eng. 88, 2934–2940 (2011)

    Article  CAS  Google Scholar 

  16. R.N. Jadhav, V. Puri, Influence of copper substitution on structural, electrical and dielectric properties of Ni(1–x)CuxMn2O4 (0 ≤ x ≤ 1) ceramics. J. Alloy Compd. 507, 151–156 (2010)

    Article  CAS  Google Scholar 

  17. S.G. Song, Z. Ling, F. Placido, Impedance analysis of MnCoCuO NTC ceramic. Mater. Res. Bull. 40, 1081–1093 (2005)

    Article  CAS  Google Scholar 

  18. K. Park, Microstructure and electrical properties of Ni1.0Mn2–xZrxO4 (0 ≤ x ≤ 1.0) negative temperature coefficient thermistors. Mat. Sci. Eng. B 104, 9 (2003)

    Article  Google Scholar 

  19. R.N. Jadhav, S.N. Mathad, V. Puri, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 38(6), 5181–5188 (2012)

    Article  CAS  Google Scholar 

  20. C.J. Ma, Y.F. Liu, Y.N. Lu, Preparation routes and electrical properties for Ni0.6Mn2.4O4 NTC ceramics. J. Mater. Sci.: Mater. Electron. 26, 7238 (2015)

    CAS  Google Scholar 

  21. J.H. Ryu, G.F. Han, J.P. Lee, Y.S. Lim, D.S. Park, D.Y. Jeong, Co and Fe doping effect on negative temperature coefficient characteristics of nano-grained NiMn2O4 thick films fabricated by aerosol-deposition. J. Nanosci. Nanotechnol. 13(5), 3422–3426 (2013)

    Article  CAS  Google Scholar 

  22. A.P. Khandale, S.S. Bhoga, Combustion synthesized Nd2–xCexCuO4 (x = 0-0.25) cathode materials for intermediate temperature solid oxide fuel cell applications. J. Power Sources 195, 7974–7982 (2010)

    Article  CAS  Google Scholar 

  23. F. Guan, Z.W. Dang, X. Chen, S.F. Huang, J.R. Wang, X. Cheng, Y.Q. Wu, Novel electrical properties of Mn-doped LaCrO3 ceramics as NTC thermistors. J. Alloy Compd. 871, 159269 (2021)

    Article  CAS  Google Scholar 

  24. L. He, Z.Y. Ling, Studies of temperature dependent ac impedance of a negative temperature coefficient Mn-Co-Ni-O thin film thermistor. Appl. Phys. Lett. 98, 242112 (2011)

    Article  Google Scholar 

  25. J.J. Qu, F. Liu, C.L. Yuan, X.Y. Liu, G.H. Chen, Effects of Bi3+ substitution for Nd3+ on microwave dielectric properties of Ca0.61(Nd1–xBix)0.26TiO3 ceramics. Mater. Lett. 159, 436–438 (2015)

    Article  CAS  Google Scholar 

  26. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  27. A. Basua, A.W. Brinkmana, R. Schmidta, Z. Klusek, P. Kowalczyk, P.K. Datta, A study of the electronic states of NixMn3–xO4+δ thin films using scanning tunneling microscopy and current imaging tunneling spectroscopy. J. Eur. Ceram. Soc. 24, 1149–1152 (2004)

    Article  CAS  Google Scholar 

  28. P.J. Kowalczyk, O. Mahapatra, D.N. McCarthy, W. Kozlowski, Z. Klusek, S.A. Brown, STM and XPS investigations of bismuth islands on HOPG. Surf. Sci. 605(7–8), 659–667 (2011)

    Article  CAS  Google Scholar 

  29. H.W. Nesbitt, D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on themechanism of MnO2 precipitation. Am. Mineral. 83(3–4), 305–315 (1998)

    Article  CAS  Google Scholar 

  30. J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990)

    Article  CAS  Google Scholar 

  31. Y.Y. Wang, H.B. Liu, T.N. Yan, J.W. Zhao, S.F. Guo, R. Sun, Z.L. Lu, D.W. Wang, Microstructure and electrical properties of Nb-doped SrTiO3‐BiFeO3 based lead‐free ceramics. J. Am. Ceram. Soc. 105(3), 2020–2028 (2022)

    Article  CAS  Google Scholar 

  32. Z.L. Lu, G. Wang, W.C. Bao, J.L. Li, L.H. Li, A. Mostaed, H.J. Yang, H.F. Ji, D.J. Li, A. Feteira, F.F. Xu, D.C. Sinclair, D.W. Wang, S.Y. Liu, Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci. 13, 2938–2948 (2020)

    Article  CAS  Google Scholar 

  33. R. Schmidt, A.A. Basu, A.W. Brinkman, Z. Klusek, P.K. Datta, Electron-hopping modes in NiMn2O4+δ materials. Appl. Phys. Lett. 86, 073501 (2005)

    Article  Google Scholar 

  34. M.A. Hamad, Magnetocaloric properties of La0.6Ca0.4MnO3. J. Therm. Anal. Calorim. 113, 609–613 (2013)

    Article  CAS  Google Scholar 

  35. R.A. Lewis, Phonon modes in CMR manganites at elevated temperatures. J. Supercond. 14, 143–148 (2001)

    Article  CAS  Google Scholar 

  36. K.H. Kim, J.Y.H.S. Gu,Choi, G.W. Park, T.W. Noh, Frequency shifts of the internal phonon modes in La0.7Ca0.3MnO3. Phy. Rev. Lett. 77, 1877–1880 (1996)

    Article  CAS  Google Scholar 

Download references

Funding

Financial supports of the National Natural Science Foundation of China (Grant No. 12264009), the Natural Science Foundation of Guangxi Province, China (Grant Nos. 2023GXNSFAA026513 and 2020GXNSFBA159027), and the Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology (Grant No. 20-065-40-001z) are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Contributions

J-JQ: Investigation, Writing—Original draft preparation, Data Curation. FL: Conceptualization, Methodology, Writing—Review and Editing. CY: Resources, Supervision. XL: Validation, Resources. LM: Validation. NS: Validation, Resources. HN: Software, Methodology. WJ: Validation.

Corresponding author

Correspondence to Fei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, JJ., Liu, F., Yuan, CL. et al. Comprehensive and multifaceted conductive mechanisms of Mn doped BaBiO3-based ceramic NTC thermistors. J Mater Sci: Mater Electron 34, 1702 (2023). https://doi.org/10.1007/s10854-023-11121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11121-2

Navigation