Skip to main content
Log in

Thermal and electrical characterization of indium phthalocyanine chloride bulk structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metallic phthalocyanines (M-Pcs) have superior structure, electrical and optical properties. Therefore, M-Pcs can be used as alternatives to traditional semiconductors. In the present work, indium phthalocyanine chloride (ClInPc) is compressed to form a bulk structure (pellet). The prepared ClInPc pellet is characterized by differential scanning Calorimetry (DSC), and impedance spectroscopy in the frequency range of 0.15–100 kHz and at different temperatures (293–393 K). The DSC analysis of the ClInPc shows only one order phase transition at 196 °C. Additionally, the impedance spectroscopy reveals that the capacitance, dissipation factor, dielectric constant, and ac electrical conductivity of the ClInPc are temperature and frequency dependent. The ClInPc also exhibits a high capacitance of order 2–12 nF. Further, the dielectric constant of such material increases by increasing the temperature which involves the distribution of relaxation times. Furthermore, the AC conductivity follows Jonscher’s universal power law σac = AωS. The temperature dependent exponents S and m also outweigh the correlated barrier hopping (CBH) model for conduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Gregory, Industrial applications of phthalocyanines, J. Porphyrins Phthalocyanines. 4 (2000) 432–437

    Article  CAS  Google Scholar 

  2. Z. Bao, A.J. Lovinger, J. Brown, New air-stable n-channel organic thin film transistors. J. Am. Chem. Soc. 120, 207 (1998)

    Article  CAS  Google Scholar 

  3. M.G. Walter, A.B. Rudine, C.C. Wamser, Porphyrins and phhalocyanines in solar photovoltaic cells. J. Porphyrins Phthalocyanines 14, 759–792 (2010)

    Article  CAS  Google Scholar 

  4. C.L.A. Leznoff, Phthalocyanines: Properties and Applications (VCH Publishers, New York, 1993)

    Google Scholar 

  5. T.T.C. Claessens, U. Hahn, Phthalocyanines: from outstanding electronic properties to emerging applications. Chem. Rec. 2, 75–97 (2008)

    Article  Google Scholar 

  6. J. Mizuguchi, G. Rihs, H. Karfunkel, Solid-state spectra of titanylphthalocyanine as viewed from molecular distortion. J. Phys. Chem. 99, 16217–16227 (1995)

    Article  CAS  Google Scholar 

  7. W. Dexters, E. Bourgeois, M. Nesladek, J. D’Haen, J. Haenen, Molecular orientation of lead phthalocyanine on (100) oriented single crystal diamond surfaces. Phys. Chem. Chem. Phys. 17, 9619 (2015)

    Article  CAS  Google Scholar 

  8. Y. Iyechika, K. Yakushi, I. Ikemoto, Structure of lead phthalocyanine (triclinic form). Acta Crystallogr. Sect. B. 38, 766–770 (1982)

    Article  Google Scholar 

  9. F. Jin, B. Chu, W. Li, Z. Su, X. Yan, J. Wang, R. Li, B. Zhao, T. Zhang, Y. Gao, Q.S.H. Wu, F. Hou, T. Lin, Highly efficient organic tandem solar cell based on SubPc:C70 bulk heterojunction. Org. Electron. 15, 3756–3760 (2014)

    Article  CAS  Google Scholar 

  10. D. Song, F. Zhu, B. Yu, L. Huang, Y. Geng, Tin(IV) phthalocyanine oxide: an air-stable semiconductor with high electron mobility. Appl. Phys. Lett. 92, 143303 (2008)

    Article  Google Scholar 

  11. T.B. Fleetham, J.P. Mudrick, W. Cao, K. Klimes, J. Xue, Efficient zinc phthalocyanine/C60 heterojunction photovoltaic devices employing tetracene anode interfacial layers. ACS Appl. Mater Interfac. 6, 7254–7259 (2014)

    Article  CAS  Google Scholar 

  12. M. Hanack, T. Schneider, M. Barthel, J.S. Shirk, S.R. Flom, R.G.S. Pong, Indium phthalocyanines and naphthalocyanines for optical limiting. Coord. Chem. Rev. 219–221, 235–258 (2001). https://doi.org/10.1016/S0010-8545(01)00327-7

    Article  Google Scholar 

  13. L. Zhang, T.L. Andrew, Improved photovoltaic response of a near-infrared sensitive solar cell by a morphology-controlling seed layer. Org. Electron. 33, 135–141 (2016). https://doi.org/10.1016/j.orgel.2016.03.014

    Article  CAS  Google Scholar 

  14. H.M. Zeyada, M.M. El-nahass, E.M. El-menyawy, A.S. El-sawah, Electrical and photovoltaic characteristics of indium phthalocyanine chloride / p-Si solar cell. Synth. Met. 207, 46–53 (2015). https://doi.org/10.1016/j.synthmet.2015.06.008

    Article  CAS  Google Scholar 

  15. K. Maduray, B. Odhav, The in vitro photodynamic effect of laser activated gallium, indium and iron phthalocyanine chlorides on human lung adenocarcinoma cells. J. Photochem. Photobiol. B, Biol. 128, 58–63 (2013)

    Article  CAS  Google Scholar 

  16. R.D. Gould, T.S. Shafai, Conduction in lead phthalocyanine films with aluminium electrodes, Thin Solid Films. 373, 89–93 (2000)

    Article  CAS  Google Scholar 

  17. R.D. Gould, N.A. Ibrahim, The electrical response of evaporated cobalt phthalocyanine thin films on exposure to NO2. Thin Solid Films 398, 432–437 (2001)

    Article  Google Scholar 

  18. S. Mammen, C.S. Menon, Electrical and optical studies on thin films of indium phthalocyanine chloride. Mater. Sci.-Pol. 23, 707–713 (2005)

    CAS  Google Scholar 

  19. W. Boukhili, M. Mahdouani, R. Bourguiga, J. Puigdollers, Experimental study and analytical modeling of the channel length influence on the electrical characteristics of small-molecule thin-film transistors. Superlattices Microstruct. 83, 224–236 (2015). https://doi.org/10.1016/j.spmi.2015.03.045

    Article  CAS  Google Scholar 

  20. M.E. Azim-Araghi, F. Pirifard, Morphology, optical and AC electrical properties of nanostructure thin film of bromo indium phthalocyanine. Mater. Sci. Semicond. Process. 16, 1466–1471 (2013). https://doi.org/10.1016/j.mssp.2013.04.008

    Article  CAS  Google Scholar 

  21. A.M. Nasr, H.I.A. El-Kader, M. Farhat, Characterization of photoactive polymer thin films using transmission spectrum. Thin Solid Films. 515, 1758–1762 (2006). https://doi.org/10.1016/j.tsf.2006.06.030

    Article  CAS  Google Scholar 

  22. M.M. El-Nahass, A.M. Farid, K.F.A El-Rahman, H.A.M. Ali, Ac conductivity and dielectric properties of bulk tin phthalocyanine dichloride (SnPcCl2). Phys. B Condens. Matter. 403, 2331–2337 (2008). https://doi.org/10.1016/j.physb.2007.12.015

    Article  CAS  Google Scholar 

  23. A. Abdelkhalik, H. Elsayed, M. Hassan, M. Nour, A.B. Shehata, Using thermal analysis techniques for identifying the flash point temperatures of some lubricant and base oils. Egypt. J. Pet. 27, 131–136 (2018)

    Article  Google Scholar 

  24. E.M. El-menyawy, H.M. Zeyada, M.M. El-nahass, AC conductivity and dielectric properties of 2- (2, 3-dihydro-1, 5-dimethyl-3-oxo-2- phenyl-1 H -pyrazol-4-ylimino) -2- (4-nitrophenyl) acetonitrile thin films. Solid State Sci. 12, 2182–2187 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.10.001

    Article  CAS  Google Scholar 

  25. N.A. El-Ghamaz, A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, M.K. Awad, S.M. Morgan, Dielectrical, conduction mechanism and thermal properties of rhodanine azodyes. Mater. Sci. Semicond. Process. 19, 150–162 (2014). https://doi.org/10.1016/j.mssp.2013.12.005

    Article  CAS  Google Scholar 

  26. M.A. Fersi, I. Chaabane, M. Gargouri, Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II). Phys. E: Low-Dimens. Syst. Nanostruct. 83, 306–313 (2016). https://doi.org/10.1016/j.physe.2016.05.001

    Article  CAS  Google Scholar 

  27. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, Temperature dependence of dielectric losses in chalcogenide glasses. J. Non-Cryst. Solids 45, 57–62 (1981)

    Article  CAS  Google Scholar 

  28. B. Barıs, Frequency dependent dielectric properties in Schottky diodes based on rubrene organic semiconductor. Phys. E: Low-Dimens. Syst. Nanostruct. 54, 171–176 (2013)

    Article  Google Scholar 

  29. H. Trabelsi, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, K. Khirouni, Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate. Phys. E: Low-Dimens. Syst. Nanostruct. 99, 75–81 (2018). https://doi.org/10.1016/j.physe.2018.01.019

    Article  CAS  Google Scholar 

  30. A. Abkari, I. Chaabane, K. Guidara, Dielectric properties and study of AC electrical conduction mechanisms by non-overlapping small polaron tunneling model in Bis (4-acetylanilinium) tetrachlorocuprate (II) compound. Phys. E: Low-Dimens. Syst. Nanostruct. 83, 119–126 (2016). https://doi.org/10.1016/j.physe.2016.04.029

    Article  CAS  Google Scholar 

  31. M.B. Gzaiel, A. Oueslati, F. Hlel, Synthesis, crystal structure, phase transition and electrical conduction mechanism of the new [(C3H7)4N]2MnCl4 compound. Phys. E: Low-Dimens. Syst. Nanostruct. 83, 405–413 (2016). https://doi.org/10.1016/j.physe.2016.03.024

    Article  CAS  Google Scholar 

  32. Y. Yan, T. Guo, X. Song, Z. Yu, Y. Jiang, C. Xia, Cu(In,Ga)Se2 thin films annealed with SnSe2 for solar cell absorber fabricated by magnetron sputtering. Sol. Energy 155, 601–607 (2017). https://doi.org/10.1016/j.solener.2017.06.068

    Article  CAS  Google Scholar 

  33. H.W. Lin, C.L. Lin, C.C. Wu, T.C. Chao, K.T. Wong, Influences of molecular orientations on stimulated emission characteristics of oligofluorene films. Org. Electron. Physics, Mater. Appl. 8, 189–197 (2007). https://doi.org/10.1016/j.orgel.2006.05.006

    Article  CAS  Google Scholar 

  34. M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, Structural and optical properties of thermally evaporated zinc phthalocyanine thin films. Opt. Mater. (Amst). 27, 491–498 (2004). https://doi.org/10.1016/j.optmat.2004.04.010

    Article  CAS  Google Scholar 

  35. M. Singh, A. Mahajan, N. Gupta, R.K. Bedi, B. Aldo, D. Chimica, V. Orabona, Study of junction charge transport properties of boron subphthalocyanine chloride thin film. Electron. Mater. Lett. 11, 118–126 (2015). https://doi.org/10.1007/s13391-014-4097-3

    Article  CAS  Google Scholar 

  36. A. Goswami, A.P. Goswami, Dielectric and optical properties of ZnS films. Thin Solid Films. 16, 175–185 (1973). https://doi.org/10.1016/0040-6090(73)90166-1

    Article  CAS  Google Scholar 

  37. M. Hussein, R. Korany, M.F.O. Hameed, S. Obayya, Optimal design of vertical silicon nanowires solar cell using hybrid optimization algorithm. J. Photon. Energy. 8, 022502 (2017)

    Article  Google Scholar 

  38. S. Kulkarni, B.M. Nagabhushana, N. Parvatikar, C. Shivakumara, Dielectric and electrical studies of Pr3+ doped nano CaSiO3 perovskite ceramics. Mater. Res. Bull. 50, 197–202 (2014)

    Article  CAS  Google Scholar 

  39. K.-M. Wan, Y.-B. Tong, Y. Zou, H.-B. Duan, J.L. Liu, X.-M. Ren, Investigation of thermochromic photoluminescent, dielectric and crystal structural properties for an inorganic–organic hybrid solid of [1-hexyl-3-methylimidazolium][PbBr3]. New J. Chem. 40, 8664–8672 (2016). https://doi.org/10.1039/C6NJ01508E

    Article  CAS  Google Scholar 

  40. X. Jiang, X. Zhao, G. Peng, W. Liu, K. Liu, Z. Zhan, Investigation on crystalline structure and dielectric relaxation behaviors of hot pressed poly (vinylidene fluoride) film. Curr. Appl. Phys. 17, 15–23 (2017). https://doi.org/10.1016/j.cap.2016.10.011

    Article  Google Scholar 

  41. M. Okutan, E. Basaran, H.I. Bakan, AC conductivity and dielectric properties of Co-doped TiO2. J. Phys. B. 364, 300–305 (2005)

    Article  CAS  Google Scholar 

  42. R. Bayrak, F. Dumludaǧ, H.T. Akçay, I. Deǧirmencioǧlu, Synthesis, characterization and electrical properties of peripherally tetra-aldazine substituted novel metal free phthalocyanine and its zinc(II) and nickel(II) complexes. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 105, 550–556 (2013). https://doi.org/10.1016/j.saa.2012.12.058

    Article  CAS  Google Scholar 

  43. R.C. Cherian, C.S. Menon, Preparation and characterization of thermally evaporated titanium phthalocyanine dichloride thin films. J. Phys. Chem. Solids 69, 2858–2863 (2008). https://doi.org/10.1016/j.jpcs.2008.08.002

    Article  CAS  Google Scholar 

  44. M.M. EL-Nahass, A.F. EL-Deeb, F. Abd-El-Salam, Influence of temperature and frequency on the electrical conductivity and the dielectric properties of nickel phthalocyanine. Org. Electron. Physics, Mater. Appl. 7, 261–270 (2006). https://doi.org/10.1016/j.orgel.2006.03.007

    Article  CAS  Google Scholar 

  45. F. Yakuphanoglu, M. Kandaz, M.N. Yaraşir, F.B. Şenkal, Electrical transport and optical properties of an organic semiconductor based on phthalocyanine. Phys. B Condens. Matter. 393, 235–238 (2007). https://doi.org/10.1016/j.physb.2007.01.007

    Article  CAS  Google Scholar 

  46. M.R. Kiran, H. Ulla, M.N. Satyanarayan, G. Umesh, Investigation of charge transport in Vanadyl-phthalocyanine with molybdenum trioxide as a buffer layer: impedance spectroscopic analysis. Synth. Met. 210, 208–213 (2015). https://doi.org/10.1016/j.synthmet.2015.10.004

    Article  CAS  Google Scholar 

  47. S. Saravanan, M.R. Anantharaman, S. Venkatachalam, Structural and electrical studies on tetrameric cobalt phthalocyanine and polyaniline composites. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 135, 113–119 (2006). https://doi.org/10.1016/j.mseb.2006.08.048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Farhat O. Hameed or S. S. A. Obayya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-ghandour, A., Hameed, M.F.O. & Obayya, S.S.A. Thermal and electrical characterization of indium phthalocyanine chloride bulk structure. J Mater Sci: Mater Electron 29, 17750–17763 (2018). https://doi.org/10.1007/s10854-018-9882-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9882-6

Navigation