Skip to main content
Log in

Novel controlled hydrothermal synthesis of three different CeO2 nanostructures and their morphology-dependent optical and magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the work, we explored an efficient synthetic platform to purposefully fabricate CeO2 nanostructures with different morphologies of by controlling the different solution conditions. All the obtained samples were characterized by means of XRD, SEM, TEM, XPS, Raman scattering, UV–Vis, Photoluminescence (PL) spectra and M–H curves. The results show that all the samples have a cubic fluorite structure and the samples synthesized in alkaline, acidic and neutral aqueous solution display nanorod/nanotube, nano-plate and nano-octahedron structure, respectively. It was also found that there is a red-shifting in the band gap of the obtained material compared to bulk one, which is mainly attributed to the influences of Ce3+ ions, oxygen vacancies and the change of sample morphology. The existence and increase of Ce3+ ions and oxygen defects in the CeO2 samples can lead to a smaller band gap, stronger PL diffraction and elevated ferromagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.F. Gong, F.M. Meng, X. Yang, Z.H. Fan, H.J. Li, Controlled hydrothermal synthesis of triangular CeO2 nanosheets and their formation mechanism and optical properties. J. Alloy. Compd. 689, 606–616 (2016)

    Article  CAS  Google Scholar 

  2. B. Xu, Q.T. Zhang, S.S. Yuan, M. Zhang, T. Ohno, Morphology control and characterization of broom-like porous CeO2. Chem. Eng. J. 260, 126–132 (2015)

    Article  CAS  Google Scholar 

  3. R. Rao, M. Yang, C. Li, H. Dong, S. Fang, A. Zhang, A facile synthesis for hierarchical porous CeO2 nanobundles and their superior catalytic performance for CO oxidation. J. Mater. Chem. A. 3, 782–788 (2015)

    Article  CAS  Google Scholar 

  4. F.M. Meng, L.N. Wang, J.B. Cui, Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route. J. Alloy. Compd. 556, 102–108 (2013)

    Article  CAS  Google Scholar 

  5. S. Letichevsky, C.A. Tellez, R.R.D. Avillez, M.I.P.D. Silva, M.A. Fraga, L.G. Appel, Obtaining CeO2-ZrO2 mixed oxides by coprecipitation: role of preparation conditions. Appl. Catal. B 58, 203–210 (2005)

    Article  CAS  Google Scholar 

  6. J.Y. Bai, Z.D. Xu, Y.F. Zheng, H.Y. Yin, Shape control of CeO2 nanostructure materials in microemulsion systems. Mater. Lett. 60, 1287–1290 (2006)

    Article  CAS  Google Scholar 

  7. H.Y. Xiao, Z.H. Ai, L.Z. Zhang, Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment. J. Phys. Chem. C 113, 16625–16630 (2009)

    Article  CAS  Google Scholar 

  8. C. Paun, O.V. Safonova, J. Szlachetko, P.M. Abdala, M. Nachtegaal, J. Sa, E. Kleymenov, A. Cervellino, F. Krumeich, J.A.V. Bokhoven, Polyhedral CeO2 nanoparticles: size-dependent geometrical and electronic structure. J. Phys. Chem. C 116, 7312–7317 (2012)

    Article  CAS  Google Scholar 

  9. Y.Y. Zhang, J.P. Hu, B.A. Bernevig, X.R. Wang, X.C. Xie, W.M. Liu, Localization and the Kosterlitz-Thouless transition in disordered grapheme. Phys. Rev. Lett. 102, 106401 (2009)

    Article  Google Scholar 

  10. A.C. Ji, W.M. Liu, J.L. Song, F. Zhou, Dynamical creation of fractionalized vortices and vortex lattices. Phys. Rev. Lett. 101, 010402 (2008)

    Article  Google Scholar 

  11. Y.H. Chen, H.S. Tao, D.X. Yao, W.M. Liu, Kondo metal and ferrimagnetic insulator on the triangular kagome lattice. Phys. Rev. Lett. 108, 246402 (2012)

    Article  Google Scholar 

  12. A.C. Ji, X.C. Xie, W.M. Liu, Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys. Rev. Lett. 99, 183602 (2007)

    Article  Google Scholar 

  13. D.S. Zhang, X.J. Du, L.Y. Shi, R.H. Gao, Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Trans. 41, 14455–14475 (2012)

    Article  CAS  Google Scholar 

  14. K. J.Qi, G.D. Zhao, Y. Li, H.J. Gao, R.B. Zhao, Z.Y. Yu, Tang, Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation. Nanoscale 6, 4072–4077 (2014)

    Article  Google Scholar 

  15. Z.L. Zhan, S.A. Bamett, An octane-fueled solid oxide fuel cell. Science 308, 844–847 (2005)

    Article  CAS  Google Scholar 

  16. Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, Z.C. Wang, Synthesis and characterization of CeO2 nano-rods. Ceram. Int. 39, 6607–6610 (2013)

    Article  CAS  Google Scholar 

  17. A. Zarkov, A. Stanulis, T. Salkus, A. Kezionis, V. Jasulaitiene, R. Ramanauskas, S. Tautkus, A. Kareiva, Synthesis of nanocrystalline gadolinium doped ceria via sol-gel combustion and sol-gel synthesis routes. Ceram. Int. 42, 3972–3988 (2016)

    Article  CAS  Google Scholar 

  18. Z.J. Li, X.Y. Niu, Z.J. Lin, N.N. Wang, H.H. Shen, W. Liu, K. Sun, Y.Q. Fu, Z.G. Wang, Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. J. Alloys Compd. 682, 647–653 (2016)

    Article  CAS  Google Scholar 

  19. Y. Chen, C.J. Qiu, C.L. Chen, X.F. Fan, S.B. Xu, W.W. Guo, Z.C. Wang, Facile synthesis of ceria nanospheres by Ce(OH)CO3 precursors. Mater. Lett. 122, 90–93 (2014)

    Article  CAS  Google Scholar 

  20. L.F. Wang, F.J. Liu, W.T. Yang, H.Y. Zhao, Y.Y. Zheng, X.B. Chen, W.J. Dong, Synthesis of multiple-shell porous CeO2 hollow spheres by a hydrogel template method. Mater. Lett. 107, 42–45 (2013)

    Article  CAS  Google Scholar 

  21. F.M. Meng, J.F. Gong, Z.H. Fan, H.J. Li, J.T. Yuan, Hydrothermal synthesis and mechanism of triangular prism-like monocrystalline CeO2 nanotubes via a facile template-free hydrothermal route. Ceram. Int. 42, 4700–4708 (2016)

    Article  CAS  Google Scholar 

  22. L.X. Pang, X.Y. Wang, X.D. Tang, Ceria nanotube formed by sacrificed precursors template through Oswald ripening, PLoS ONE 10, 0132536 (2015)

    Google Scholar 

  23. J.F. Gong, F.M. Meng, Z.H. Fan, H.J. Li, Controlled synthesis of CeO2 microstructures from 1D rod-like to 3D lotus-like and their morphology-dependent properties. Electron. Mater. Lett. 12, 846–855 (2016)

    Article  CAS  Google Scholar 

  24. R.K. Singhal, P. Kumari, A. Samariya, S. Kumar, S.C. Sharma, Y.T. Xing, E.B. Saitovitch, Role of electronic structure and oxygen defects in driving ferromagnetism in nondoped bulk CeO2. Appl. Phys. Lett. 97, 172503–172506 (2010)

    Article  Google Scholar 

  25. G.F. Wang, Q.Y. Mu, T. Chen, Y.D. Wang, Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature. J. Alloy. Compd. 493, 202–207 (2010)

    Article  CAS  Google Scholar 

  26. N.S. Ferreira, R.S. Angélica, V.B. Marques, C.C.O. de Lima, M.S. Silva, Cassava-starch-assisted sol-gel synthesis of CeO2 nanoparticles. Mater. Lett. 165, 139–142 (2016)

    Article  CAS  Google Scholar 

  27. D. Jampaiah, P. Venkataswamy, V.E. Coyle, B.M. Reddy, S.K. Bhargava, Low-temperature CO oxidation over manganese,cobalt, and nickel doped CeO2 nanorods. RSC Adv. 6, 80541–80548 (2016)

    Article  CAS  Google Scholar 

  28. F.L. Liang, Y. Yu, W. Zhou, X.Y. Xu, Z.H. Zhu, Highly defective CeO2 as a promoter for efficient and stable water oxidation. J. Mater. Chem. A 3, 634–640 (2015)

    Article  CAS  Google Scholar 

  29. A. Younis, D. Chu, Y.V. Kaneti, S. Li, Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities. Nanoscale 8, 378–387 (2016)

    Article  CAS  Google Scholar 

  30. H. Li, A. Petz, H. Yan, J.C. Nie, S. Kunsagi-Mate, Morphology dependence of raman properties of carbon nanotube layers formed on nanostructured CeO2 films. J. Phys. Chem. C 115, 1480–1483 (2011)

    Article  CAS  Google Scholar 

  31. S. Colis, A. Bouaine, G. Schmerber, C. Ulhaq-Bouillet, A. Dinia, S. Choua, P. Turek, High-temperature ferromagnetism in Co-doped CeO2 synthesized by the coprecipitation technique. Phys. Chem. Chem. Phys. 14, 7256–7263 (2012)

    Article  CAS  Google Scholar 

  32. A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Photoluminescence properties of praseodymium doped cerium oxide nanocrystals. Ceram. Int. 40, 4445–4453 (2014)

    Article  CAS  Google Scholar 

  33. H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M. Lin, Experimental evidence for self-assembly of CeO2 particles in solution: formation of single-crystalline porous CeO2 nanocrystals. J. Phys. Chem. C 116, 242–247 (2012)

    Article  CAS  Google Scholar 

  34. X.Y. Yang, X.J. Yu, G. Li, The effects of Nd doping on the morphology and optical properties. J. Mater. Sci. 27, 9704–9709 (2016)

    CAS  Google Scholar 

  35. X.F. Niu, M. Li, B. Wu, H.Z. Li, Controlled synthesis and magnetic properties of thin CeO2. J. Mater. Sci. 27, 10198–10206 (2016)

    CAS  Google Scholar 

  36. J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors. Ceram. Int. 41, 1970–1979 (2015)

    Article  Google Scholar 

  37. X.F. Niu, M. Li, B.M. Hao, H.Z. Li, Hydrothermal synthesis of 3D hierarchical porous CeO2 rugby-ball-like nanostructures with nanorods as building blocks. J. Mater. Sci. 27, 6845–6848 (2016)

    CAS  Google Scholar 

  38. H.L. Lin, C.Y. Wu, R.K. Chiang, Facile synthesis of CeO2 nanoplates and nanorods by [100] oriented growth. J. Colloid Interface Sci. 341, 12–17 (2010)

    Article  CAS  Google Scholar 

  39. L. Qin, X.F. Niu, Controlled hydrothermal synthesis, excellent optical and magnetic properties of CeO2 nanocubes. J. Mater. Sci. 27, 12233–12239 (2016)

    CAS  Google Scholar 

  40. X.H. Liu, S.J. Chen, X.D. Wang, Synthesis and photoluminescence of CeO2:Eu3+ phosphor powders. J. Lumin. 127, 650–654 (2007)

    Article  CAS  Google Scholar 

  41. B. Choudhury, A. Choudhury, Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles. Mater. Chem. Phys. 131, 666–671 (2012)

    Article  CAS  Google Scholar 

  42. V. Ramasamy, G. Vijayalakshmi, Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles. Superlatt. Microstruct. 85, 510–521 (2015)

    Article  CAS  Google Scholar 

  43. J. Malleshappa, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, S.C. Prashantha, B.D. Prasad, H.R. Naika, K. Lingaraju, B.S. Surendra, Leucas aspera mediated multifunctional CeO2 nanoparticles: structural, photoluminescent, photocatalytic and antibacterial properties. Spectrochim. Acta A 149, 452–462 (2015)

    Article  CAS  Google Scholar 

  44. C.R. Li, M.Y. Cui, Q.T. Sun, W.J. Dong, Y.Y. Zheng, K. Tsukamoto, B.Y. Chena, W.H. Tang, Nanostructures and optical properties of hydrothermal synthesized CeOHCO3 and calcined CeO2 with PVP assistance. J. Alloy. Compd. 504, 498–502 (2010)

    Article  CAS  Google Scholar 

  45. F. Lu, F.M. Meng, L.N. Wang, Y. Sang, J.J. Luo, Controlled synthesis and optical properties of CeO2 nanoparticles by a N2H4·H2O-assisted hydrothermal method. Micro Nano Lett. 7, 624–627 (2012)

    Article  Google Scholar 

  46. S.Y. Chen, Y.H. Lu, T.W. Huang, D.C. Yan, C.L. Dong, Oxygen vacancy dependent magnetism of CeO2 nanoparticles prepared by thermal decomposition method. J. Phys. Chem. C 114, 19576–19581 (2010)

    Article  CAS  Google Scholar 

  47. J.H. Chen, Y.J. Lin, H.C. Chang, Y.H. Chen, L. Horng, C.C. Chang, Effect of Co content on magnetic and optical properties of Zn1−xCoxOy nanorods. J. Alloy. Compd. 548, 235–238 (2013)

    Article  CAS  Google Scholar 

  48. A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, A. Punnoose, Ferromagnetism in chemically synthesized CeO2 nanoparticles by Ni doping. Phys. Rev. B 76, 165206 (2007)

    Article  Google Scholar 

  49. A. Tiwari, V.M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, A. Gupta, Ferromagnetism in Co doped CeO2: observation of a giant magnetic moment with a high curie temperature. Appl. Phys. Lett. 88, 142511 (2006)

    Article  Google Scholar 

  50. P. Slusser, D. Kumar, A. Tiwari, Unexpected magnetic behavior of Cu-doped CeO2. Appl. Phys. Lett. 96, 142506 (2010)

    Article  Google Scholar 

  51. M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, H.Y. Li, On the origin of ferromagnetism in CeO2 nanocubes. Appl. Phys. Lett. 93, 062505 (2008)

    Article  Google Scholar 

  52. M.I.B. Bernardi, A. Mesquita, F. Beron, K.R. Pirota, A.O.D. Zevallos, A.C. Doriguetto, H.B.D. Carvalho, The role of oxygen vacancies and their location in the magnetic properties of Ce1−xCuxO2−δ nanorods. Phys. Chem. Chem. Phys. 17, 3072–3080 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51072002, 51272003), Dr. Start-up capital of Suzhou University (2016jb10), the Natural Science Research Fund of Anhui Provincial Department of Education (KJ2016A775), and Academic Technical Leader of Suzhou University (2018xjxs01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Niu, X. Novel controlled hydrothermal synthesis of three different CeO2 nanostructures and their morphology-dependent optical and magnetic properties. J Mater Sci: Mater Electron 29, 17178–17186 (2018). https://doi.org/10.1007/s10854-018-9809-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9809-2

Navigation