Skip to main content
Log in

Controlled synthesis and magnetic properties of thin CeO2 nanotubes by a facile template-free hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Uniform CeO2 nano-octahedrons and the straw-like CeO2 nanostructures assembled by numerous thin nanotubes have been successfully synthesized by a facile one-step hydrothermal synthesis route only using Ce(NO3)3·6H2O as cerium resource, Na3PO4·6H2O as mineralizer and no surfactant or template. The reaction time was systematically investigated. XRD, SEM, TEM, XPS, Raman scattering, Photoluminescence spectra and M-H curves were employed to characterize the samples. The results showed that both CeO2 nano-octahedrons and nanotubes owned a fluorite cubic structure and the octahedrons-like structures gradually transform into nanotubes with the increase of the reaction time. The possible formation mechanism based on nucleation-dissolution–recrystallization of nanoparticles was proposed. It is found that there are Ce3+ ions and oxygen vacancies in surface of samples. All the samples exhibited similar emission peaks of room temperature photoluminescence and the emission intensity increases with the increase of concentration of oxygen vacancies. The M-H curves of CeO2 nano-octahedrons and nanotubes exhibit excellent room-temperature ferromagnetism, which is likely attributed to the effects of the Ce3+ ions and oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Li, H.Q. Fan, X.H. Jia, J. Phys. Chem. C 114, 14684 (2010)

    Article  Google Scholar 

  2. L.N. Wang, F.M. Meng, K.K. Li, F. Lu, Appl. Surf. Sci. 286, 269 (2013)

    Article  Google Scholar 

  3. B. Xu, Q.T. Zhang, S.S Yuan, M. Zhang, and T. Ohno. Chem. Eng. J. 260, 126 (2015)

    Article  Google Scholar 

  4. R.C. Rao, M. Yang, C.S. Li, H.Z. Dong, S. Fang, A.M. Zhang, J. Mater. Chem. A 3, 782 (2015)

    Article  Google Scholar 

  5. S. Iijima, Nature 354, 56 (1991)

    Article  Google Scholar 

  6. C. Wan, D.G. Cheng, F.Q. Chen, X.L. Zhan, Chem. Commun. 51, 9785 (2015)

    Article  Google Scholar 

  7. N.S. Arul, D. Mangalaraj, T.W. Kim, Appl. Surf. Sci. 349, 459 (2015)

    Article  Google Scholar 

  8. Y. Chen, G. Yang, Z.H. Jing, Mater. Lett. 176, 290 (2016)

    Article  Google Scholar 

  9. J.S. Wu, J.S. Wang, Y.C. Du, H.Y. Li, Y.L. Yang, X.J. Jia, Appl. Catal. B: Environ. 174–175, 435 (2015)

    Article  Google Scholar 

  10. J. Zhang, H. Kumagai, K. Yamamura, S. Ohara, S. Takami, A. Morikawa, H. Shinjoh, K. Kaneko, T. Adschiri, A. Suda, Nano Lett. 11, 361 (2011)

    Article  Google Scholar 

  11. D.S. Zhang, X.J. Du, L.Y. Shi, R.H. Gao, Dalton Trans. 41, 14455 (2012)

    Article  Google Scholar 

  12. I. Singh, A. Chandra, Int. J. Hydrog. Energy 41, 1913 (2016)

    Article  Google Scholar 

  13. N. Izu, T. Itoh, M. Nishibori, I. Matsubara, W. Shin, Sens. Actuators. B-Chem. 171, 350 (2012)

    Article  Google Scholar 

  14. He Li, G.F. Wang, F. Zhang, Y. Cai, Y.D. Wang, and I. Djerd, RSC. Advances. 2, 12413 (2012)

    Google Scholar 

  15. J. Qi, K. Zhao, G.D. Li, Y. Gao, H.J. Zhao, R.B. Yu, Z.Y. Tang, Nanoscale 6, 4072 (2014)

    Article  Google Scholar 

  16. Z. Yang, D. Han, D. Ma, H. Liang, L. Liu, Y. Yang, Cryst. Growth Des. 10, 291 (2010)

    Article  Google Scholar 

  17. J. Wei, Z. Yang, H. Yang, T. Sun, Y. Yang, Cryst. Eng. Comm. 13, 4950 (2011)

    Article  Google Scholar 

  18. H. Imagawa, S.H. Sun, J. Phys. Chem. C 116, 2761 (2012)

    Article  Google Scholar 

  19. Z. Guo, F. Du, G. Li, Z. Cui, Cryst. Growth Des. 8, 2674 (2008)

    Article  Google Scholar 

  20. X.H. Lu, X. Huang, S.L. Xie, D.Z. Zheng, Z.Q. Liu, C.L. Liang, Y.X. Tong, Langmuir 26, 7569 (2010)

    Article  Google Scholar 

  21. X.H. Lu, D.Z. Zheng, J.Y. Gan, Z.Q. Liu, C.L. Liang, P. Liu, Y.X. Tong, J. Mater. Chem. 20, 7118 (2010)

    Article  Google Scholar 

  22. G.Z. Chen, C.X. Xu, X.Y. Song, W. Zhao, Y. Ding, S.X. Sun. Inorg. Chem. 47, 723 (2008)

    Article  Google Scholar 

  23. Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, Z.C. Wang, Ceram. Int. 39, 6607 (2013)

    Article  Google Scholar 

  24. R.B. Yu, L. Yan, P. Zheng, J. Chen, X.R. Xing, J. Phys. Chem. C 112, 19896 (2008)

    Article  Google Scholar 

  25. K. Lin, S. Chowdhury, Int. J. Mol. Sci. 11, 3226 (2010)

    Article  Google Scholar 

  26. Z.Y. Huo, C. Chen, X.W. Liu, D.R. Chu, H.H. Li, Q. Peng, Y.D. Li, Chem. Commun. 32, 3741 (2008)

    Article  Google Scholar 

  27. Z.J. Yang, D.Q. Han, D.L. Ma, H. Liang, L. Liu, Y.Z. Yang, Cryst. Growth Des. 10, 291 (2010)

    Article  Google Scholar 

  28. C.R. Li, M.Y. Cui, Q.T. Sun, W.J. Dong, Y.Y. Zheng, K. Tsukamoto, B.Y. Chena, W.H. Tang, J. Alloy. Compd. 504, 498 (2010)

    Article  Google Scholar 

  29. G.F. Wang, Q.Y. Mu, T. Chen, Y.D. Wang, J. Alloy Compd. 493, 202 (2010)

    Article  Google Scholar 

  30. X.B. Chen, G.S. Li, Y.G. Su, X.Q. Qiu, L.P. Li, Z.G. Zou, Nanotechnology. 20, 115606 (2009)

    Article  Google Scholar 

  31. F.L. Liang, Y. Yu, W. Zhou, X.Y. Xu, Z.H. Zhu, J. Mater. Chem. A. 3, 634 (2015)

    Article  Google Scholar 

  32. A. Younis, D. Chu, Y.V. Kaneti, S. Li, Nanoscale 8, 378 (2016)

    Article  Google Scholar 

  33. D. Jiang, W.Z. Wang, E.P. Gao, S.M. Sun, L. Zhang, Chem. Commun. 50, 2005 (2014)

    Article  Google Scholar 

  34. H. Li, A. Petz, H. Yan, J.C. Nie, S. Kunsagi-Mate, J. Phys. Chem. C 115, 1480 (2011)

    Article  Google Scholar 

  35. H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M. Lin, J. Phys. Chem. C 116, 242 (2012)

    Article  Google Scholar 

  36. A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Ceram. Int. 40, 4445 (2014)

    Article  Google Scholar 

  37. X.D. Li, J.G. Li, D. Huo, Z.M. Xiu, X.D. Sun, J. Phys. Chem. C 113, 1806 (2009)

    Article  Google Scholar 

  38. H.F. Xu, H. Li, J. Magn. Magn. Mater. 377, 272 (2015)

    Article  Google Scholar 

  39. J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Ceram. Int. 41, 1970 (2015)

    Article  Google Scholar 

  40. F.M. Meng, J.F. Gong, Z.H. Fan, H.J. Li, J.T. Yuan, Ceram. Int. 42, 4700 (2016)

    Article  Google Scholar 

  41. L.N. Wang, F.M. Meng, K.K. Li, F. Lu, Appl. Surf. Sci. 286, 269 (2013)

    Article  Google Scholar 

  42. S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Cryst. Growth Des. 7, 950 (2007)

    Article  Google Scholar 

  43. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)

    Article  Google Scholar 

  44. S.H. Yu, H. Cölfen, A. Fischer, Coll. Surf. A: Physicochem. Eng. Asp. 243, 49 (2004)

    Article  Google Scholar 

  45. C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, L.Q. Chen, Nanotechnology. 16, 1454 (2005)

    Article  Google Scholar 

  46. F. Lu, F.M. Meng, L.N. Wang, Y. Sang, J.J. Luo, Micro. Nano. Lett. 7, 624 (2012)

    Article  Google Scholar 

  47. F.M. Meng, L.N. Wang, J.B. Cui, J. Alloy. Compd. 556, 102 (2013)

    Article  Google Scholar 

  48. S.Y. Chen, Y.H. Lu, T.W. Huang, D.C. Yan, C.L. Dong, J. Phys. Chem. C 114, 19576 (2010)

    Article  Google Scholar 

  49. J.H. Chen, Y.J. Lin, H.C. Chang, Y.H. Chen, L. Horng, C.C. Chang, J. Alloy. Compd. 548, 235 (2013)

    Article  Google Scholar 

  50. A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, Phys. Rev. B. 76, 165206 (2007)

    Article  Google Scholar 

  51. A. Tiwari, V.M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, Appl. Phys. Lett. 88, 142511 (2006)

    Article  Google Scholar 

  52. P. Slusser, D. Kumar, A. Tiwari, Appl. Phys. Lett. 96, 142506 (2010)

    Article  Google Scholar 

  53. S.Y. Chen, C.H. Tsai, M.Z. Huang, D.C. Yan, T.W. Huang, A. Gloter, C.L. Chen, H.J. Lin, C.T. Chen, C.L. Dong, J. Phys. Chem. C 116, 8707 (2012)

    Article  Google Scholar 

  54. F.M. Meng, C. Zhang, Z.H. Fan, J.F. Gong, A.X. Li, Z.L. Ding, H.B. Tang, M. Zhang, G.F. Wu, J. Alloy. Compd. 647, 1013 (2015)

    Article  Google Scholar 

  55. M.I.B. Bernardi, A. Mesquita, F. Beron, K.R. Pirota, A.O.D. Zevallos, A.C. Doriguetto, H.B.D. Carvalho, Phys. Chem. 17, 3072 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51072002 and 51272003), Outstanding Young Talents Funded Projects of Suzhou University(Grant Nos. 2014XQNRL010), and the Natural Science Research Fund of Anhui Provincial Department of Education(KJ2016A775).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, X., Li, M., Wu, B. et al. Controlled synthesis and magnetic properties of thin CeO2 nanotubes by a facile template-free hydrothermal method. J Mater Sci: Mater Electron 27, 10198–10206 (2016). https://doi.org/10.1007/s10854-016-5097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5097-x

Keywords

Navigation