Skip to main content
Log in

Forward and reverse bias current–voltage (I–V) characteristics in the metal–ferroelectric–semiconductor (Au/SrTiO3/n-Si) structures at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main electrical parameters of fabricated Au/SrTiO3/n-Si (MFS) structures have been investigated by using various methods. The values of ideality factor (n) and zero-bias barrier height (ΦB0) are calculated from the forward bias current–voltage (IF–VF) data as 0.60, and 0.48 eV from thermionic theory (TE) and Cheung functions, respectively. The value of Rs is also obtained from the Norde function and Cheung functions as 87.83 and 137.57 Ω, respectively. The discrepancy between these results can be attributed to the calculated method and the measured voltage range. Besides, the energy density distribution profile of interface state (Nss) was obtained from the (IF–VF) data by taking into account voltage dependent barrier height (BH), n and without Rs. On the other hand, the possible current conduction mechanism (CCM) are determined by utilizing the In(IF) versus In(VF) and In(IR) versus VR1/2 plots. The double logarithmic IF–VF plot shows three linear regions which are corresponding to low, moderate and high bias voltages with different slopes (m) as 2.40, 1.96 and 1.27 respectively. While the first region space charge limited current (SCLC) is dominated, the other two regions ohmic behavior is dominated. The field-lowering coefficient (β) was also obtained from the slope of In(IR)–V1/2 plot as 4.40 \(\times\) 10−6 eV−1 m1/2 V1/2. This value of β is close to theoretical value of Poole–Frenkel emission (PFE) rather than Schottky emission (SE) mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. van Benthem, C. Elsässer, R.H. French, ‘Bulk electronic structure of SrTiO3: experiment and theory’. J. Appl. Phys. 90, 6156 (2001)

    Article  Google Scholar 

  2. R.K. Gupta, K. Ghosh, P.K. Kahol, ‘Fabrication and electrical characterization of Au/p-Si/STO/Au contact’. Curr. Appl. Phys. 9, 933–936 (2009)

    Article  Google Scholar 

  3. M.K. Hudait, M. Clavel, Y. Zhu, P.S. Goley, S. Kundu, D. Maurya, S. Priya, ‘Integration of SrTiO3 on crystallographically oriented epitaxial Germanium for Low-Power device applications’. ACS Appl. Mater. Interfaces 7, 5471–5479 (2015)

    Article  CAS  Google Scholar 

  4. G. Panomsuwan, O. Takai, N. Saito, ‘Enhanced memory window of Au/BaTiO3/SrTiO3/Si (001) MFIS structure with high c-axis orientation for non-volatile memory applications. Appl Phys A 108, 337–342 (2012)

    Article  CAS  Google Scholar 

  5. İ Taşcıoğlu, Ö Tüzün Özmen, H.M. Şağban, E. Yağlıoğlu, Ş. Altındal, ‘Frequency dependent electrical and dielectric properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode’. J. Electron. Mater. 46, 2379–2386 (2017)

    Article  Google Scholar 

  6. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), pp. 362–380

    Google Scholar 

  7. E.H. Rhoderick, R. H. Williams, Metal Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1988), pp. 257–267

    Google Scholar 

  8. S.R. Forrest, Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793–1896 (1997)

    Article  CAS  Google Scholar 

  9. R.T. Tung, Formation of an electric dipole at metal-semiconductor interfaces. Phys. Rev. B 64, 205310 (2001)

    Article  Google Scholar 

  10. S.G. Wang, Y. Zhang, Y.M. Zhang, Y.M. Zhang, Characterization of ion-implanted 4H-SiC Schottky barrier diodes. Chin. Phys. B 19, 017203 (2010)

    Article  Google Scholar 

  11. A. Tataroglu, Comparative study of the electrical properties of Au/n-Si (MS) and Au/Si3N4/n-Si (MIS) Schottky diodes. Chin. Phys. B 22, 068402 (2013)

    Article  Google Scholar 

  12. S. Chand, On the intersecting behaviour of current–voltage characteristics of inhomogeneous Schottky diodes at low temperatures. Semicond. Sci. Technol. 19, 82 (2004)

    Article  CAS  Google Scholar 

  13. A.C. Varghese, C.S. Menon, Electrical properties of hybrid phthalocyanines thin films using gold and lead electrodes. Eur. Phys. J. B 47, 485 (2005)

    Article  CAS  Google Scholar 

  14. V. Janardhanam, H.K. Lee, K.H. Shim, H.B. Hong, S.H. Lee, K.S. Ahn, C.J. Choi, Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J. Alloys Compd. 504, 146 (2010)

    Article  CAS  Google Scholar 

  15. S. Hlali, A. Farji, N. Hizem, L. Militaru, A. Kalboussi, A. Souifi, High temperature and voltage dependent electrical and dielectric properties of TiN/Al2O3/p-Si MIS structure. J. Alloys Compd. 713, 194–203 (2017)

    Article  CAS  Google Scholar 

  16. H. Trabelsi, M. Bejar, E. Dhahri, M. Sajieddine, K. Khirouni, P.R. Prezas, B.M.G. Melo, M.A. Valente, M.P.F. Graça, Effect of oxygen vacancies on SrTiO3 electrical properties. J. Alloys Compd. 723, 894–903 (2017)

    Article  CAS  Google Scholar 

  17. G.D. Wilk, R.M. Wallace, J.M. Anthony, High-k gate dielectrics: current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001)

    Article  CAS  Google Scholar 

  18. H.G. Çetinkaya, M. Yıldırım, P. Durmuş, Ş Altındal, Correlation between barrier height and ideality factor in identically prepared diodes of Al/Bi4Ti3O12/p-Si (MFS) structure with barrier inhomogeneity. J. Alloys Compd. 721, 750–756 (2017)

    Article  Google Scholar 

  19. A. Tataroğlu, Ş Altındal, The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using I–V characteristics. J. Alloys Compd. 484, 405 (2009)

    Article  Google Scholar 

  20. H. Tanrıkulu, A. Tataroğlu, E.E. Tanrıkulu, A.B. Uluşan, Electrical characterization of MIS diode prepared by magnetron sputtering. IJPAP 56, 142–148 (2018)

    Google Scholar 

  21. Ö Vural, N. Yıldırım, Ş Altındal, A. Türüt, Current–voltage characteristics of Al/Rhodamine-101/n-GaAs and Cu/Rhodamine-101/n-GaAs rectifier contacts. Synt. Metal. 157, 679–683 (2007)

    Article  CAS  Google Scholar 

  22. Ş Altındal, İ Yücedağ, A. Tataroğlu, Analysis of surface states and series resistance in Au/n-Si Schottky diodes with insulator layer using current-voltage and admittance—voltage characteristics. Vacuum 84, 363–368 (2010)

    Article  Google Scholar 

  23. A. Tataroğlu, Ş Altındal, Characterization of current–voltage (I–V) and capacitance–voltage– frequency (C–V–f) features of Al/SiO2/p-Si (MIS) Schottky diodes. Microelectron. Eng. 83, 582–588 (2006)

    Article  Google Scholar 

  24. A. Büyükbaş Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş Altındal, On the conduction mechanisms of Au/(Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current–voltage–temperature (I–V–T) characteristics. J. Mater. Sci. 29, 159–170 (2018)

    Google Scholar 

  25. E.H. Nicollian, J.R. Brews, MOS Physics and Technology, 2nd edn. (Wiley, New York, 1982), pp. 71–150

    Google Scholar 

  26. K.E. Bohlin, Generalized Norde plot including determination of the ideality factor. J. Appl. Phys. 60, 1223 (1986)

    Article  Google Scholar 

  27. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  28. S.B.K. Aydin, D.E. Yıldız, H.K. Çavuş, R. Şahingöz, ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode. Bull. Mater. Sci. 37, 1563–1568 (2014)

    Article  CAS  Google Scholar 

  29. A. Tataroglu, A.A. Hendi, R.H. Alorainy, F. Yakuphanoglu A new aluminum iron oxide Schottky photodiode designed via sol–gel coating method. Chin. Phys. B 23, 057504 (2014)

    Article  Google Scholar 

  30. S. Alialy, D.E. Yıldız, Ş Altındal, Study on the reverse bias carrier transport mechanism in Au/TiO2/n-4H-SiC structure. J. Nano. Opto. 11, 626–630 (2016)

    Article  CAS  Google Scholar 

  31. V. Rajagopal Reddy, V. Manjunath, V. Janardhanam, Y.-H. Kıl, C.-J. Cho, Electrical properties and current transport mechanisms of the Au/n-GaN Schottky structure with solution-processed high-k BaTiO3 interlayer. J. Electron. Mater. 43, 3499 (2014)

    Article  CAS  Google Scholar 

  32. K. Sreenu, C. Venkata Prasad, V. Rajagopal, Reddy, Barrier parameters and current transport characteristics of Ti/p-InP schottky junction modified using orange G (OG) Organic Interlayer. J. Electron. Mater. 46, 5746 (2017)

    Article  CAS  Google Scholar 

  33. A.C. Varghese, C.S. Menon, Electrical properties of hybrid phthalocyanines thin films using gold and lead electrodes. Eur. Phys. J. 47, 485–489 (2005)

    Article  CAS  Google Scholar 

  34. A. Ashok Kumar, V. Rajagopal Reddy, V. Janardhanam, H.D. Yang, H.J. Yun, C.J. Choi, Electrical properties of Pt/n-type Ge Schottky contact with PEDOT:PSS interlayer. J. Alloys Compd. 549, 18–21 (2013)

    Article  CAS  Google Scholar 

  35. V. Janardhanam, Y.K. Park, K.S. Ahn, C.J. Choi, Carrier transport mechanism of Se/n-type Si Schottky diodes. J. Alloys Compd. 534, 37–41 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University Scientific Research Project (Project Number: GU-BAP.05/2018-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Buyukbas-Ulusan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buyukbas-Ulusan, A., Altındal-Yerişkin, S. & Tataroğlu, A. Forward and reverse bias current–voltage (I–V) characteristics in the metal–ferroelectric–semiconductor (Au/SrTiO3/n-Si) structures at room temperature. J Mater Sci: Mater Electron 29, 16740–16746 (2018). https://doi.org/10.1007/s10854-018-9767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9767-8

Navigation