Skip to main content
Log in

Electrical Properties and Current Transport Mechanisms of the Au/n-GaN Schottky Structure with Solution- Processed High-k BaTiO3 Interlayer

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electrical properties and current transport mechanisms of Au/BaTiO3 (BTO)/n-GaN metal–insulator–semiconductor (MIS) structures have been investigated by current–voltage (IV) and capacitance–voltage (CV) measurements at room temperature. Experimental results reveal that the MIS structure has a higher rectification ratio with low reverse leakage current compared with the Au/n-GaN metal–semiconductor (MS) structure. The calculated barrier height of the Au/BTO/n-GaN MIS structure [0.87 eV (IV)/1.02 eV (CV)] increases compared with the Au/n-GaN MS structure [0.73 eV (IV)/0.96 eV (CV)]. The series resistance is extracted using Cheung’s functions, and the values are in good agreement with each other. Furthermore, the energy distribution of the interface state density is estimated from the forward-bias IV data. It is noteworthy that the interface state density of the MIS structure is lower than that of the MS structure. In both MS and MIS structures under forward-bias conditions, ohmic and space-charge-limited conduction mechanisms are identified at lower and higher voltages, respectively. Investigations reveal that Poole–Frenkel emission dominates the reverse leakage current in both Au/n-GaN and Au/BTO/n-GaN structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Levinshtein, S.L. Rumyantsev, and M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (New York: Wiley-Interscience, 2001).

    Google Scholar 

  2. R. Vetury, N.Q. Zhang, S. Keller, and U.K. Mishra, IEEE Trans. Electron Devices 48, 560 (2001).

    Article  Google Scholar 

  3. L.C. Chen, C.Y. Hsu, W.H. Lan, and S.Y. Teng, Solid State Electron. 47, 1843 (2003).

    Article  Google Scholar 

  4. R. Werner, M. Reinhardt, M. Emmerling, A. Forchel, V. Harle, and A. Bazhenov, Phys. E 7, 915 (2000).

    Article  Google Scholar 

  5. Y.K. Su, F.S. Juang, and M.H. Chen, Jpn. J. Appl. Phys. 42, 2257 (2003).

    Article  Google Scholar 

  6. P.T. Blanchard, K.A. Bertness, T.E. Harvery, L.M. Mansfield, A.W. Sanders, and N.A. Sanford, IEEE Trans. Nanotechnol. 7, 760 (2008).

    Article  Google Scholar 

  7. M. Asif Khan, M.S. Shur, J.N. Kuznia, Q. Chen, J. Bourn, and W. Schaff, Appl. Phys. Lett. 66, 1083 (1995).

    Article  Google Scholar 

  8. S.J. Pearton, F. Ren, A.P. Zhang, G. Dang, X.A. Cao, K.P. Lee, H. Cho, B.P. Gila, J.W. Johnson, C. Monier, C.R. Abernathy, J. Han, A.G. Baca, J.-I. Chyi, C.-M. Lee, T.E. Nee, C.-C. Chuo, and S.N.G. Chu, Mater. Sci. Eng. B 82, 227 (2001).

    Article  Google Scholar 

  9. T.H. Tsai, J.R. Huang, K.W. Lin, W.C. Hsu, H.I. Chen, and W.C. Liu, Sens. Actuators B 129, 292 (2008).

    Article  Google Scholar 

  10. C.-Y. Hu, H. Nokubo, M. Okada, J.-P. Ao, and Y. Ohno, Jpn. J. Appl. Phys. 49, 04DF11 (2010).

    Google Scholar 

  11. Y. Nakano and T. Jimbo, Appl. Phys. Lett. 82, 218 (2003).

    Article  Google Scholar 

  12. J.T. Yan, C.Y. Tseng, C.H. Chen, and C.T. Lee, Proc. SPIE 7216, 721612-1 (2009).

    Google Scholar 

  13. E. Arslan, S. Butun, Y. Safak, H. Uslu, I. Tascioglu, S. Altindal, and E. Ozbay, Microelectron. Reliab. 51, 370 (2011).

    Article  Google Scholar 

  14. V. Rajagopal Reddy, M. Siva Pratap Reddy, B. Prasanna Lakshmi, and A. Ashok Kumar, J. Alloys Compd. 509, 8001 (2011).

    Article  Google Scholar 

  15. Y. Irokawa, Phys. B 407, 2957 (2012).

    Article  Google Scholar 

  16. B. Prasanna Lakshmi, V. Rajagopal Reddy, V. Janardhanam, M. Siva Pratap Reddy, and Lee Jung-Hee, Appl. Phys. A 113, 713 (2013).

    Article  Google Scholar 

  17. H. Basanta kumar Sharma, H.N.K. Sharma, and A. Mansingh, J. Mater. Sci. 34, 1385 (1999).

    Article  Google Scholar 

  18. G. Houzet, K. Blary, S. Lepilliet, D. Lippens, L. Burgnies, G. Velu, J.C. Carru, E. Nguema, and P. Mounaix, J. Appl. Phys. 109, 014116 (2011).

    Article  Google Scholar 

  19. S. Nazir and U. Schwingenschlogl, Appl. Phys. Lett. 99, 073102 (2011).

    Article  Google Scholar 

  20. H. Takahashi, Y. Numamoto, J. Tani, and S. Tsuekawa, Jpn. J. Appl. Phys. 45, 7405 (2006).

    Article  Google Scholar 

  21. J. Wang, H. Wan, and Q. Lin, Meas. Sci. Technol. 14, 172 (2003).

    Article  Google Scholar 

  22. S.M. Sze, Physics of Semiconductors (New York: Wiley, 1981).

    Google Scholar 

  23. M. Drechsler, D.M. Hofmann, B.K. Meyer, T. Detchprohm, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 34, L1178 (1995).

    Article  Google Scholar 

  24. E.H. Rhoderick and T.H. Williams, Metal Semiconductor Contacts (Oxford: Clarendon, 1988).

    Google Scholar 

  25. S. Altindal, S. Karadeniz, N. Tugluoglu, and A. Tataroglu, Solid State Electron. 47, 1847 (2003).

    Article  Google Scholar 

  26. H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    Article  Google Scholar 

  27. P. Chattopadyay and A.N. Daw, Solid State Electron. 29, 555 (1986).

    Article  Google Scholar 

  28. X. Zhou, B.L. Longsdorf, F.E. Jones, and M.C. Lonergan, Inorg. Chim. Acta 294, 207 (1999).

    Article  Google Scholar 

  29. A. Tataroglu and S. Altindal, Microelectron. Eng. 83, 582 (2006).

    Article  Google Scholar 

  30. S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  Google Scholar 

  31. M. Saglam, A. Ates, B. Guzeldir, A. Astam, and M.A. Yildrim, J. Alloys Compd. 484, 570 (2009).

    Article  Google Scholar 

  32. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  Google Scholar 

  33. H.J. Wang, J. Electron. Mater. 27, 1272 (1998).

    Article  Google Scholar 

  34. J.P. Sullivan, R.T. Tung, M.R. Pinto, and W.R. Graham, J. Appl. Phys. 70, 7403 (1991).

    Article  Google Scholar 

  35. M.K. Hudait and S.B. Krupanidhi, Mater. Sci. Eng. B 87, 141 (2001).

    Article  Google Scholar 

  36. A. Turut, M. Saglam, H. Efeoglu, N. Yalcin, M. Yildirim, and B. Abay, Phys. B 205, 41 (1995).

    Article  Google Scholar 

  37. S. Aydogan, U. Incekara, A.R. Deniz, and A. Turut, Microelectron. Eng. 87, 2525 (2010).

    Article  Google Scholar 

  38. Y.S. Ocak, M. Kulakci, T. Kılıcoglu, R. Turan, and K. Akkılıc, Synth. Met. 159, 1603 (2009).

    Article  Google Scholar 

  39. V. Rajagopal Reddy, V. Janardhanam, Jin-Woo Ju, Hyung-Joong Yun, and Chel-Jong Choi, Solid State Commun. 179, 34 (2014).

    Article  Google Scholar 

  40. V. Janardhanam, Y.K. Park, K.S. Ahn, and C.J. Choi, J. Alloys Compd. 534, 37 (2012).

    Article  Google Scholar 

  41. A. Ashok Kumar, V. Rajagopal Reddy, V. Janardhanam, H.D. Yang, H.J. Yun, and C.J. Choi, J. Alloys Compd. 549, 18 (2013).

    Article  Google Scholar 

  42. A.S. Raid, Phys. B 270, 148 (1999).

    Article  Google Scholar 

  43. V. Janardhanam, H.-K. Lee, K.-H. Shim, H.-B. Hong, S.-H. Lee, K.S. Ahn, and C.J. Choi, J. Alloys Compd. 504, 146 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Priority Research Center Program (2011-0031400) and the Converging Research Center Program (2012K001428) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea. It was also supported by the R&D Program (Grant No. 10045216) for Industrial Core Technology funded by the Ministry of Trade, Industry, and Energy (MOTIE), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajagopal Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal Reddy, V., Manjunath, V., Janardhanam, V. et al. Electrical Properties and Current Transport Mechanisms of the Au/n-GaN Schottky Structure with Solution- Processed High-k BaTiO3 Interlayer. J. Electron. Mater. 43, 3499–3507 (2014). https://doi.org/10.1007/s11664-014-3177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3177-3

Keywords

Navigation