Skip to main content
Log in

Determination of the critical carrier concentration for the metal–insulator transition in Ga-doped ZnO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ga-doped ZnO (GZO) thin films with different Ga contents (1, 2, 4, 3, and 5 at.%) were successfully deposited on glass substrates using a spin-coating process. The temperature dependent electrical conductivity and room-temperature Hall effect measurements were performed for the films. The variation of electrical conductivity with Ga content was well explained by considering the change in the inelastic diffusion length of electrons. The critical value of carrier concentration for the metal–insulator transition was estimated as 1.77 × 1018 cm−3 for GZO. The critical value of Ga content, where Ga as a donor source becomes ineffective, on the order of 5.25 at.% was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Yildiz, S. Uzun, N. Serin, T. Serin, Influence of grain boundaries on the figure of merit of undoped, Al, In, and Sn doped ZnO thin films for photovoltaic applications. Scr. Mater. 113, 23–25 (2016)

    Article  Google Scholar 

  2. T.-W. Kang, S.H. Kim, C.H. Kim, S.-M. Lee, H.-K. Kim, J.S. Park, J.H. Lee, Y.S. Yang, S.-J. Lee, Flexible polymer/metal/polymer and polymer/metal/inorganic trilayer transparent conducting thin film heaters with highly hydrophobic surface. ACS Appl. Mater. Interfaces 9, 33129–33136 (2017)

    Article  Google Scholar 

  3. H. Cheng, H. Deng, Y. Wang, M. Wei, In fluence of ZnO buffer layer on the electrical, optical and surface properties of Ga-doped ZnO films. J. Alloys Compd. 705, 598–601 (2017)

    Article  Google Scholar 

  4. A. Yildiz, E. Ozturk, A. Atilgan, M. Sbeta, A. Atli, T. Serin, An understanding of the band gap shrinkage in Sn-doped ZnO for dye-sensitized solar cells. J. Electron. Mater. 46, 6739–6744 (2017)

    Article  Google Scholar 

  5. C.-S. Lee, C.-H. Jeon, B.-T. Lee, S.-H. Jeong, Abrupt conversion of the conductivity and band-gap in the sputter grown Ga-doped ZnO films by a change in growth ambient: effects of oxygen partial pressure. J. Alloys Compd. 742, 977–985 (2018)

    Article  Google Scholar 

  6. R.V.M. Naidu, A. Subrahmanyam, A. Verger, M.K. Jain, S.V.N. Bhaskara Rao, S.N. Jha, D.M. Phase, Electron–electron interactions-based metal-insulator transition in Ga doped ZnO thin films. Electron. Mater. Lett. 8, 457–462 (2012)

    Article  Google Scholar 

  7. J. Mukherjee, B.R.K. Nanda, M.S. Ramachandra Rao, Metal–insulator transition in Ga doped ZnO via controlled thickness. arXiv preprint arXiv:1704.03846 (2017)

  8. S. Brochen, G. Feuillet, J.-L. Santailler, R. Obrecht, M. Lafossas, P. Ferret, J.-M. Chauveau, J. Pernot, Non-metal to metal transition in n-type ZnO single crystal materials. J. Appl. Phys. 121, 095704 (2017)

    Article  Google Scholar 

  9. A.G. Zabrodskii, K.N. Zinoveva, Metallic conductivity near the metal-insulator transition in Cd12xMnxTe. Eksp. Teor. Fiz. 86, 727–742 (1984)

    Google Scholar 

  10. T.G. Castner, N.K. Lee, G.S. Cieloszyk, G.L. Salinger, Dielectric anomaly and the metal-insulator transition in n-type silicon. Phys. Rev. Lett. 34, 1627–1630 (1975)

    Article  Google Scholar 

  11. T. Serin, A. Yildiz, S. Uzun, E. Çam, N. Serin, Electrical conduction properties of In-doped ZnO thin films. Phys. Scr. 84, 065703 (2011)

    Article  Google Scholar 

  12. A.T. Vai, V.L. Kuznetsov, H. Jain, D. Slocombe, N. Rashidi, M. Pepper, P.P. Edwards, The transition to the metallic state in polycrystalline n-type doped ZnO thin films. Anorg. Allg. Chem. 640, 1054–1062 (2014)

    Article  Google Scholar 

  13. J. Hu, R.G. Gordon, Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium. J. Appl. Phys. 72, 5381 (1992)

    Article  Google Scholar 

  14. M. Kaveh, D.J. Newson, D.B. Zimra, M. Pepper, The smallest length scale near the metal-insulator transition. J. Phys. C 20, L19 (1987)

    Article  Google Scholar 

  15. V. Bhosle, A. Tiwari, J. Narayan, Electrical properties of transparent and conducting Ga doped ZnO. J. Appl. Phys. 100, 033713 (2006)

    Article  Google Scholar 

  16. M. Kaveh, N.F. Mott, The metal–insulator transition in disordered 3d systems: a new view. J. Phys. C 15, L697 (1982)

    Article  Google Scholar 

  17. C. Leighton, I. Terry, P. Becla, Metallic conductivity near the metal–insulator transition in Cd12xMnxTe. Phys. Rev. B 58, 9773–9782 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ankara Yıldırım Beyazıt University BAP under Project Number 4042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sbeta.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbeta, M., Serin, T. & Yildiz, A. Determination of the critical carrier concentration for the metal–insulator transition in Ga-doped ZnO. J Mater Sci: Mater Electron 29, 14111–14115 (2018). https://doi.org/10.1007/s10854-018-9543-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9543-9

Navigation