Skip to main content
Log in

Effects of Rapid Thermal Annealing on Electrical Transport in Heavily Doped ZnO Thin Films Deposited at Different Substrate Temperatures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, heavily doped ZnO thin films with carrier concentrations of 1.7 × 1020–1.1 × 1021 cm−3 were prepared on glass substrates using direct current magnetron sputtering combined with rapid thermal annealing (RTA). The effects of RTA on the electrical transport properties of the thin films were investigated. Results showed that the resistivities of the thin films deposited at low temperatures were markedly improved due to the increased mobilities and/or carrier concentrations. Temperature-dependent Hall measurements and theoretical calculations suggested that the influence of grain boundary scattering was negligible for all the samples and the mobility was mainly determined by ionized impurity scattering. The influence of crystallographic defects on the mobility could be effectively reduced via RTA when the carrier concentration was above 4.0 × 1020 cm−3, resulting in a mobility and resistivity close to the ionized impurity scattering theoretical estimation. The highest mobility of 46 cmV−1 s−1 at the resistivity of 2.8 × 10−4 Ω cm and the lowest resistivity of 2.6 × 10−4 Ω cm were achieved for the RTA-treated 1 wt.% Al-doped ZnO and 5 wt.% Ga-doped ZnO thin films, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech, and M. Wuttig, J. Appl. Phys. 95, 1911 (2004).

    Article  Google Scholar 

  2. L. Raniero, I. Ferreira, A. Pimentel, A. Goncalves, P. Canhola, E. Fortunato, and R. Martins, Thin Solid Films 511, 295 (2006).

    Article  Google Scholar 

  3. S. Kim, W.I. Lee, E.H. Lee, S.K. Hwang, and C. Lee, J. Mater. Sci. 42, 4845 (2007).

    Article  Google Scholar 

  4. C. Periasamy and P. Chakrabarti, J. Electron. Mater. 40, 259 (2011).

    Article  Google Scholar 

  5. S. Calnan and A. Tiwari, Thin Solid Films 518, 1839 (2010).

    Article  Google Scholar 

  6. S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch, and W. Moller, Appl. Phys. Lett. 94, 042103 (2009).

    Article  Google Scholar 

  7. Y.-C. Lee, S.-Y. Hu, W. Water, K.-K. Tiong, Z.-C. Feng, Y.-T. Chen, J.-C. Huang, J.-W. Lee, C.-C. Huang, J.-L. Shen, and M.H. Cheng, J. Lumin. 129, 148 (2009).

    Article  Google Scholar 

  8. K.K. Kim, S. Niki, J.Y. Oh, J.O. Song, T.Y. Seong, S.J. Park, S. Fujita, and S.W. Kim, J. Appl. Phys. 97, 066103 (2005).

    Article  Google Scholar 

  9. B.-T. Lee, T.-H. Kim, and S.-H. Jeong, J. Phys. D 39, 957 (2006).

    Article  Google Scholar 

  10. H.J. Cho, S.U. Lee, B. Hong, Y.D. Shin, J.Y. Ju, H.D. Kim, M. Park, and W.S. Choi, Thin Solid Films 518, 2941 (2010).

    Article  Google Scholar 

  11. H. Jia, T. Matsui, and M. Kondo, Prog. Photovolt: Res. Appl. 20, 111 (2012).

    Article  Google Scholar 

  12. T. Minami, H. Sato, K. Ohashi, T. Tomofuji, and S. Takata, J. Cryst. Growth 117, 370 (1992).

    Article  Google Scholar 

  13. M.W.J. Prins, K.-O. Grosse-Holz, J.F.M. Cillessen, and L.F. Feiner, J. Appl. Phys. 83, 888 (1998).

    Article  Google Scholar 

  14. S. Brehme, F. Fenske, W. Fuhs, E. Nebauer, M. Poschenrieder, B. Selle, and I. Sieber, Thin Solid Films 342, 167 (1999).

    Article  Google Scholar 

  15. T. Pisarkiewicz, K. Zakrzewska, and E. Leja, Thin Solid Films 174, 217 (1989).

    Article  Google Scholar 

  16. K. Ellmer, J. Phys. D Appl. Phys. 34, 3097 (2001).

    Article  Google Scholar 

  17. K. Ellmer, Nat. Photonics 6, 809 (2012).

    Article  Google Scholar 

  18. J. Kim, J.-H. Yun, S.-W. Jee, Y.C. Park, M. Ju, S. Han, Y. Kim, J.-H. Kim, W.A. Anderson, and J.-H. Lee, Mater. Lett. 65, 786 (2011).

    Article  Google Scholar 

  19. C. Lennon, R. Tapia, R. Kodama, Y. Chang, S. Sivananthan, and M. Deshpande, J. Electron. Mater. 38, 1568 (2009).

    Article  Google Scholar 

  20. J. T-Thienprasert, S. Rujirawat, W. Klysubun, J. Duenow, T. Coutts, S. Zhang, D. Look, and S. Limpijumnong, Phys. Rev. Lett. 110, 055502 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Yang, Y., Huang, J. et al. Effects of Rapid Thermal Annealing on Electrical Transport in Heavily Doped ZnO Thin Films Deposited at Different Substrate Temperatures. J. Electron. Mater. 43, 3973–3978 (2014). https://doi.org/10.1007/s11664-014-3254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3254-7

Keywords

Navigation