Skip to main content

Advertisement

Log in

Sunset yellow dyed triglycine sulfate single crystals: enhanced thermal, mechanical, optical and di-/piezo-/ferro-/pyro-electric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single crystals of pure and sunset yellow (SSY) dye doped (0.05 mol%) triglycine sulphate (TGS) were grown by slow evaporation solution technique with the vision to improve the properties of pure TGS crystal. The external morphology of TGS crystal was deduced from its internal crystal structure by using two of the well established models, namely Bravais–Friedel–Donnay–Harker model (B–F–D–H) and Hartman–Perdok (H–P) periodic-bound chain (PBC) vectors model. The selective nature of sunset yellow dye to selectively stain the particular growth sectors of TGS crystal was studied. The structural analysis of both the crystals was carried out using powder XRD and FTIR studies. UV–Vis–NIR spectroscopy was carried out on both pure and SSY dyed TGS crystals to study their linear optical properties and various optical parameters namely optical band gap, refractive index, extinction coefficient and optical conductivity were determined. The thermal stability, melting point, ferro- to para-electric transition temperature, piezoelectric charge coefficient, ferroelectricity and mechanical hardness got enhanced as an effect of SSY dye doping in TGS matrix. The piezoelectric conversion efficiency (d22) got enhanced from ~ 56 pm/V for pure TGS single crystal to ~ 85 pm/V for SSY doped TGS single crystal. The true-remanent polarization was determined for dyed TGS crystal using ‘Remanent Hysteresis Task’ which showed the presence of very small contributions of non-switchable components. ‘Time-Dependent Compensated (TDC)’ hysteresis task revealed the absence of resistive leakage in SSY-Doped TGS crystal. The pyroelectric coefficient got enhanced from ~ 761 µCm−2/°C for pure TGS single crystal to ~ 850 µCm−2/°C for SSY doped TGS single crystal. Comparative optical, mechanical, dielectric, piezoelectric, ferroelectric and pyroelectric studies provide useful scientific information of an important class of TGS crystals and suggest SSY-Doped TGS crystal as a better alternative than pure TGS crystal for various opto-electronics and ferroelectric devices applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J. Zyss, P. Kelley, P.F. Liao, Molecular Nonlinear Optics Materials, Physics, and Devices, 1 edn. (Academic Press, San Diego, 1993)

    Google Scholar 

  2. K.T. Holman, A.M. Pivovar, M.D. Ward, Science 294(80), 1907 (2001)

    Article  Google Scholar 

  3. Y.-H. Li, Z.-R. Qu, H. Zhao, Q. Ye, L.-X. Xing, X.-S. Wang, R.-G. Xiong, X.-Z. You, Inorg. Chem. 43, 3768 (2004)

    Article  Google Scholar 

  4. K. Biedrzycki, Solid State Commun. 118, 141 (2001)

    Article  Google Scholar 

  5. C. Berbecaru, H.V. Alexandru, L. Pintilie, A. Dutu, B. Logofatu, R.C. Radulescu, Mater. Sci. Eng. B 118, 141 (2005)

    Article  Google Scholar 

  6. R.B. Lal, A.K. Batra, Ferroelectrics 142, 51 (1993)

    Article  Google Scholar 

  7. S. Hoshino, Y. Okaya, R. Pepinsky, Phys. Rev. 115, 323 (1959)

    Article  Google Scholar 

  8. G. Arunmozhi, E. de Matos Gomes, J.L. Ribeiro, Phys. B 325, 26 (2003)

    Article  Google Scholar 

  9. B. Andriyevsky, N. Esser, A. Patryn, C. Cobet, W. Ciepluch-Trojanek, M. Romanyuk, Phys. B 373, 328 (2006)

    Article  Google Scholar 

  10. T.C. Upadhyay, A. Nautiyal, Int. Lett. Chem. Phys. Astron. 11, 54 (2013)

    Article  Google Scholar 

  11. C. Aragó, J.A. Gonzalo, J. Phys. Condens. Matter 12, 3737 (2000)

    Article  Google Scholar 

  12. X. Sun, M. Wang, Q.-W. Pan, W. Shi, C.-S. Fang, Cryst. Res. Technol. 34, 1251 (1999)

    Article  Google Scholar 

  13. K.L. Bye, P.W. Whipps, E.T. Keve, Ferroelectrics 4, 253 (1972)

    Article  Google Scholar 

  14. J.-M. Chang, A.K. Batra, R.B. Lal, Cryst. Growth Des. 2, 431 (2002)

    Article  Google Scholar 

  15. V.Y. Kurlyak, V.Y. Stadnyk, B.V. Andriyevsky, M.O. Romanyuk, Z.O. Kohut, V.M. Gaba, Mater. Sci. 33, 692 (2015)

    Google Scholar 

  16. G. Arunmozhi, R. Jayavel, C. Subramanian, Mater. Lett. 33, 251 (1998)

    Article  Google Scholar 

  17. D. Jayalakshmi, J. Kumar, J. Cryst. Growth 310, 1497 (2008)

    Article  Google Scholar 

  18. P.R. Deepthi, J. Shanthi, RSC Adv. 6, 33686 (2016)

    Article  Google Scholar 

  19. A. Abu El-Fadl, J. Phys. Chem. Solids 60, 1881 (1999)

    Article  Google Scholar 

  20. A. Abu El-Fadl, Cryst. Res. Technol. 34, 1047 (1999)

    Article  Google Scholar 

  21. E. Mihaylova, A. Aladjadjiyan, Ferroelectr. Lett. Sect. 30, 13 (2003)

    Article  Google Scholar 

  22. E. Mihaylova, S. Stoyanov, Phys. Status Solidi 154, 797 (1996)

    Article  Google Scholar 

  23. R. Muralidharan, R. Mohankumar, P.M. Ushasree, R. Jayavel, P. Ramasamy, J. Cryst. Growth 234, 545 (2002)

    Article  Google Scholar 

  24. G.B. Rao, P. Rajesh, P. Ramasamy, Mater. Res. Bull. 60, 709 (2014)

    Article  Google Scholar 

  25. F. Pan, M. Shing Wong, C. Bosshard, P. Günter, V. Gramlich, Adv. Mater. Opt. Electron. 6, 261 (1996)

    Article  Google Scholar 

  26. M. Rifani, Y.-Y. Yin, D.S. Elliott, M.J. Jay, S.-H. Jang, M.P. Kelley, L. Bastin, B. Kahr, J. Am. Chem. Soc. 117, 7572 (1995)

    Article  Google Scholar 

  27. M. Shkir, J. Mater. Res. 31, 1046 (2016)

    Article  Google Scholar 

  28. M. Shkir, S. Alfaify, V. Ganesh, I.S. Yahia, H. Algarni, H. Shoukry, J. Mater. Sci. Mater. Electron. 27, 10673 (2016)

    Article  Google Scholar 

  29. P. Rajesh, A. Silambarasan, P. Ramasamy, Mater. Res. Bull. 49, 640 (2014)

    Article  Google Scholar 

  30. B. Kahr, R.W. Gurney, Chem. Rev. 101, 893 (2001)

    Article  Google Scholar 

  31. R.S. Aliabadi, N.O. Mahmoodi, J. Clean. Prod. 179, 235 (2018)

    Article  Google Scholar 

  32. N. Sinha, N. Goel, B.K. Singh, M.K. Gupta, B. Kumar, J. Solid State Chem. 190, 180 (2012)

    Article  Google Scholar 

  33. S. Bhandari, N. Sinha, G. Ray, B. Kumar, Chem. Phys. Lett. 591, 10 (2014)

    Article  Google Scholar 

  34. N. Sinha, S. Bhandari, H. Yadav, G. Ray, S. Godara, N. Tyagi, J. Dalal, S. Kumar, B. Kumar, CrystEngComm 17, 5757 (2015)

    Article  Google Scholar 

  35. H. Yadav, N. Sinha, N. Tyagi, B. Kumar, Cryst. Growth Des. 15, 4908 (2015)

    Article  Google Scholar 

  36. S. Goel, N. Sinha, H. Yadav, A. Hussain, B. Kumar, Mater. Res. Bull. 83, 77 (2016)

    Article  Google Scholar 

  37. H. Yadav, N. Sinha, B. Kumar, J. Cryst. Growth 450, 74 (2016)

    Article  Google Scholar 

  38. G. Ray, S. Kumar, N. Sinha, B. Kumar, Curr. Appl. Phys. 17, 813 (2017)

    Article  Google Scholar 

  39. S. Goel, N. Sinha, H. Yadav, A.J. Joseph, A. Hussain, B. Kumar, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.03.003

    Google Scholar 

  40. S. Goel, H. Yadav, N. Sinha, B. Singh, I. Bdikin, D.C. Rao, K. Gopalaiah, B. Kumar, J. Appl. Crystallogr. 50, 1498 (2017)

    Article  Google Scholar 

  41. H. Yadav, N. Sinha, B. Kumar, Cryst. Growth Des. 16, 4559 (2016)

    Article  Google Scholar 

  42. W. Kaminsky, J. Appl. Crystallogr. 38, 566 (2005)

    Article  Google Scholar 

  43. R. Docherty, G. Clydesdale, K.J. Roberts, P. Bennema, J. Phys. D 24, 89 (1991)

    Article  Google Scholar 

  44. P. Hartman, W.G. Perdok, Acta Crystallogr. 8, 521 (1955)

    Article  Google Scholar 

  45. A. Hussain, N. Sinha, A.J. Joseph, S. Goel, B. Singh, I. Bdikin, B. Kumar, Arab. J. Chem. (2018). https://doi.org/10.1016/j.arabjc.2018.02.001

    Google Scholar 

  46. S.V. Soni, S.S. Soni, Int. Conf. Chem. Eng. Pharm. Sci. 47, 137, (2012)

    Google Scholar 

  47. P. Manoharan, N.N. Pillai, Arch. Appl. Sci. Res. 5, 183 (2013)

    Google Scholar 

  48. F. Khanum, J. Podder, Int. J. Opt. 2012, 1 (2012)

    Article  Google Scholar 

  49. O. Sahin, O. Uzun, U. Kolemen, N. Ucar, Mater. Charact. 58, 197 (2007)

    Article  Google Scholar 

  50. B. Raju, A. Saritha, G. Bhagavannarayana, K. Hussain, J. Cryst. Growth 324, 184 (2011)

    Article  Google Scholar 

  51. S. Chandran, R. Paulraj, P. Ramasamy, Mater. Res. Bull. 68, 210 (2015)

    Article  Google Scholar 

  52. J. Tauc, A. Menth, J. Non. Cryst. Solids 8–10, 569 (1972)

    Article  Google Scholar 

  53. S. Goel, H. Yadav, N. Sinha, B. Singh, I. Bdikin, B. Kumar, Acta Crystallogr. Sect. B 74, 12 (2018)

    Article  Google Scholar 

  54. J. Dalal, B. Kumar, Opt. Mater. (Amst). 51, 139 (2016)

    Article  Google Scholar 

  55. H.V. Alexandru, C. Berbecaru, L. Ion, A. Dutu, F. Ion, L. Pintilie, R.C. Radulescu, Appl. Surf. Sci. 253, 358 (2006)

    Article  Google Scholar 

  56. C. Rai, G. Sanjeev, S.M. Dharmaprakash, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 2510 (2010)

    Article  Google Scholar 

  57. A. Saxena, V. Gupta, K. Sreenivas, Mater. Sci. Eng. B 79, 91 (2001)

    Article  Google Scholar 

  58. A. Hussain, N. Sinha, K. Dhankhar, A.J. Joseph, B. Kumar, J. Mater. Sci. Mater. Electron. 29, 6403 (2018)

    Article  Google Scholar 

  59. A. Hussain, N. Sinha, A.J. Joseph, K. Dhankhar, S. Goel, B. Kumar, J. Mater. Sci. Mater. Electron. 28, 14298 (2017)

    Article  Google Scholar 

  60. S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Mater. Chem. Phys. 202, 56 (2017)

    Article  Google Scholar 

  61. S. Goel, N. Sinha, H. Yadav, A.J. Joseph, B. Kumar, Phys. E 91, 72 (2017)

    Article  Google Scholar 

  62. N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, B. Kumar, Ceram. Int. 44, 8582 (2018)

    Article  Google Scholar 

  63. P. Rajesh, G.B. Rao, P. Ramasamy, J. Cryst. Growth 468, 340 (2017)

    Article  Google Scholar 

  64. R.C.G. Naber, K. Asadi, P.W.M. Blom, D.M. de Leeuw, B. de Boer, Adv. Mater. 22, 933 (2010)

    Article  Google Scholar 

  65. M. Senthil Pandian, P. Ramasamy, B. Kumar, Mater. Res. Bull. 47, 1587 (2012)

    Article  Google Scholar 

  66. C. Rai, K. Byrappa, S.M. Dharmaprakash, Phys. B 406, 3308 (2011)

    Article  Google Scholar 

  67. A. Hussain, N. Sinha, S. Bhandari, H. Yadav, B. Kumar, J. Asian Ceram. Soc. 4, 337 (2016)

    Article  Google Scholar 

  68. A.J. Joseph, S. Goel, A. Hussain, B. Kumar, Ceram. Int. 43, 16676 (2017)

    Article  Google Scholar 

  69. A.J. Joseph, B. Kumar, Solid State Commun. 271, 11 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for the financial support received from the DRDO Project (ARMREB/MAA/2015/163) and DST project (EMR/2015/000385). Sahil Goel, Abid Hussain, and Abhilash Joseph would like to thank CSIR and DRDO for providing the Senior Research Fellowship (SRF). Dr. Nidhi Sinha expresses her gratitude to the Principal, SGTB Khalsa College for encouragement and support for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, S., Sinha, N., Hussain, A. et al. Sunset yellow dyed triglycine sulfate single crystals: enhanced thermal, mechanical, optical and di-/piezo-/ferro-/pyro-electric properties. J Mater Sci: Mater Electron 29, 13449–13463 (2018). https://doi.org/10.1007/s10854-018-9470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9470-9

Navigation