Skip to main content
Log in

Crystal violet doped triglycine acetate crystal: a potential material for optoelectronic applications

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In order to enrich the properties of pure triglycine acetate (TGAc) crystals, pure and crystal violet dye (CV)-doped triglycine acetate single crystals were developed by slow evaporation method. By using powder X-ray diffraction (XRD), the crystalline phase and unit cell parameters were analyzed. Because of the insertion of CV dye in the TGAc matrix, three characteristic absorption bands were observed in UV–VIS-NIR absorption spectra at ~ 248, 302, and 589 nm for the dye-doped crystals. Using transmittance data, different optical constants, i.e., optical band gap (Eg), extinction coefficient (k), refractive index (n) and optical conductivity (σ) were determined for both of the samples. Using the Vicker’s microhardness test in the load range 5 g–50 g, the mechanical strength of the crystals was tested and found to be higher for dye-doped TGAc crystal. Using Vicker's microhardness tester, mechanical properties such as work hardening index, standard hardness values, yield strength, fracture toughness, brittleness index, and elastic rigidity constant values were calculated. Measurements for the second harmonic generation (SHG) efficiency were made and noticed that the SHG efficiency is enhanced due to doping. With an increment in frequency, the dielectric constant and dielectric loss for grown crystals have been observed to deteriorate. The thermal stability and decomposition temperature were found to be elevated in the case of 0.01 mol percent CV dye-doped TGAc. The enhanced optical properties, SHG efficiency, mechanical efficiency and thermal stability of the doped crystals confirm their suitability for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. N Sinha, K Batra, S Bhukkal, R Kumar, S Kumar, S Goel and B Kumar Arab. J. Chem 13 5750 (2020)

    Article  Google Scholar 

  2. B Saleh Fundamentals of Photonics, MC Teich. (New York: Wiley) (1991)

    Book  Google Scholar 

  3. M J Shkir Mater. Res. 31 1046 (2016)

    Article  ADS  Google Scholar 

  4. P R Deepthi, A Sukhdev, P Mohan Kumar, J Shanthi and B C Hemaraju SN Appl Sci. 2 1493 (2020)

    Article  Google Scholar 

  5. S Goel, N Sinha and H Yadav Arab. J. Chem. 13 146 (2020)

    Article  Google Scholar 

  6. P R Deepthi and J Shanthi RSC Adv. 6 3686 (2016)

    Article  Google Scholar 

  7. G B Rao, P Rajesh and P Ramasamy Mater. Res. Bull. 60 709 (2014)

    Article  Google Scholar 

  8. H Yadav, N Sinha and B Kumar J. Cryst. Growth 450 74 (2016)

    Article  ADS  Google Scholar 

  9. J Wu et al. Dyes. Pigmt 88 174 (2011)

    Article  Google Scholar 

  10. S Bhandari, N Sinha, G Ray and B Kumar Chem. Phys. Lett. 591 10 (2014)

    Article  ADS  Google Scholar 

  11. S S Hussaini, N R Dhumane, V G Dongre and M D Shirsat Mater Sci. Polut. 27 365 (2009)

    Google Scholar 

  12. S Suresh, A Ramanand, D Jayaraman and P Mani Optoelectron. Adv. Mat. 4 1766 (2010)

    Google Scholar 

  13. P R Deepthi, A Sukhdev, P M Kumar, V J Angadi, U M Pasha and J Shanthi Chem. Data Collect. 276 17 (2018)

    Google Scholar 

  14. K Batra, N Sinha and B Kumar J. Mater. Sci. Mater. Electron. 30 14902 (2019)

    Article  Google Scholar 

  15. S Bhukkal, N Sinha, H Yadav, S Goel, B Singh, I Bdikin and B Kumar Vacuum 154 90 (2018)

    Article  ADS  Google Scholar 

  16. P L Marek Biomimetic dye aggregate solar cells. (Cham: Springer) (2013)

    Book  Google Scholar 

  17. P R Deepthi, A Sukhdev, P M Kumar, J Shanthi, B N Pavithra and B C Hemraju Indian J. Phys. 93 991 (2019)

    Article  ADS  Google Scholar 

  18. J Tauc and A Menth J. Non. Cryst. Solids 8–10 569 (1972)

    Article  ADS  Google Scholar 

  19. S Chandran, R Paulraj and P Ramasamy Mater. Res. Bull. 68 210 (2015)

    Article  Google Scholar 

  20. G Stapper, M Bernasconi, N Nicoloso and M Parrinello Phys. Rev. B 59 797 (1999)

    Article  ADS  Google Scholar 

  21. S Kasap and P Capper Handbook of Electronic and Photonic Materials. (Berlin: Springer) (2006)

    Google Scholar 

  22. O Sahin, O Uzun, U Kölemen and N Uçar Mater. Charact. 58 197 (2007)

    Article  Google Scholar 

  23. S Goel, N Sinha, H Yadav, A Hussain and B Kumar Mater. Res. Bull. 83 77 (2016)

    Article  Google Scholar 

  24. B Raju, A Saritha, G Bhagavannarayana and K Hussain J. Cryst. Growth 324 184 (2011)

    Article  ADS  Google Scholar 

  25. S Chandran, R Paulraj and P Ramasamy Mater. Res. Bull 68 210 (2015)

    Article  Google Scholar 

  26. S Goel, N Sinha, A Hussain, A J Joseph, H Yadav and B Kumar J Mater Sci: Mater Electron 29 13449 (2018)

    Google Scholar 

  27. E M Onitsch Mikroskopie 2 131 (1947)

    Google Scholar 

  28. H Li and R C Bradt Mater. Sci. Eng. A 142 51 (1991). https://doi.org/10.1016/0921-5093(91)90753-A

    Article  Google Scholar 

  29. M Suresh Kumar, K Rajesh, G V Vijayaraghavan and S Krishnan Res. Exp. 5 115101 (2018)

    Article  Google Scholar 

  30. D Townsend and J E Field J. Mater. Sci. 25 1347 (1990)

    Article  ADS  Google Scholar 

  31. N Elavarasu, P Sathya, S Pugazhendhi, N Vijayan, K K Maurya and R Gopalakrishnan Opt. Laser Technol. 84 107 (2016)

    Article  ADS  Google Scholar 

  32. S K Kurtz and T T Perry J. Appl. Phys. 39 3798 (1968)

    Article  ADS  Google Scholar 

  33. N Sinha et al. Cryst. Eng. Commun. 17 5757 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the management of Presidency University, Bengaluru, for providing financial assistance through the University seed grant (File No: RI&C/Funded Project/RC1 dated 11/7/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Deepthi.

Ethics declarations

Conflict of interest

The corresponding author declares that there is no conflict of interest on behalf of all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepthi, P.R., Sukhdev, A., Mohan Kumar, P. et al. Crystal violet doped triglycine acetate crystal: a potential material for optoelectronic applications. Indian J Phys 96, 3277–3287 (2022). https://doi.org/10.1007/s12648-021-02220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02220-z

Keywords

Navigation