Skip to main content
Log in

Ultra-sensitive and selective acetone gas sensor with fast response at low temperature based on Cu-doped α-Fe2O3 porous nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the acetone gas sensing material based on pure α-Fe2O3 nanotubes, pure and Cu-doped α-Fe2O3 porous nanotubes were fabricated by electrospinning and annealing processes. Different Cu dopant concentrations are introduced to investigate the dopant’s role in sensing performance. The structures and chemical compositions of the as-prepared products were examined using a series of material characterization methods including XRD, EDS, SEM and nitrogen adsorption–desorption analysis. And the acetone sensing results demonstrate that the gas sensitivity of porous nanotubes is better than nanotubes. Moreover, compared with pure samples, the sensor based on 3.0 wt% Cu-doped α-Fe2O3 porous nanotubes exhibits higher response (99.43/100 ppm) and excellent selectivity towards acetone at 164 °C. Meanwhile, the detection limit can extend down to ppb level (2.2/100 ppb). Additionally, the sensor also shows fast response and recovery time (5/18 s) and good repeatability to acetone. The enhancement of gas sensitivity is ascribed to not only the effective utility of hollow and porous structures, but also the high catalytic activity of the Cu additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.A. Harraz, R.M. Mohamed, A. Shawky, I.A. Ibrahim, J. Alloy. Compd. 508, 133 (2010)

    Article  Google Scholar 

  2. V. Saasa, M. Mokwena, B. Dhonge et al., Sens. Transducers 195, 9 (2015)

    Google Scholar 

  3. B. Sathyaseelan, E. Manikandan, V. Lakshmanan et al., J. Alloy. Compd. 671, 486 (2016)

    Article  Google Scholar 

  4. Y.-J. Li, K.-M. Li, C.-Y. Wang, C.-I. Kuo, L.-J. Chen, Sens. Actuators B 161, 734 (2012)

    Article  Google Scholar 

  5. K. Lokesh, G. Kavitha, E. Manikandan et al., IEEE Sens. J. 16, 2477 (2016)

    Article  Google Scholar 

  6. M. Poloju, N. Jayababu, E. Manikandan, M.V. Ramana Reddy, J. Mater. Chem. C 5, 2662 (2017)

    Article  Google Scholar 

  7. L. Wang, Z. Lou, J. Deng, R. Zhang, T. Zhang, ACS Appl. Mater. Interfaces 7, 13098 (2015)

    Article  Google Scholar 

  8. K. Thanigai Arul, E. Manikandan, R. Ladchumananandasivam, M. Maaza, Polym. Int. 65, 1482 (2016)

    Article  Google Scholar 

  9. X. Zhou, J. Liu, C. Wang et al., Sens. Actuators B 206, 577 (2015)

    Article  Google Scholar 

  10. N. Barsan, D. Koziej, U. Weimar, Sens. Actuators B 121, 18 (2007)

    Article  Google Scholar 

  11. R. Rajendran, R. Muralidharan, R. Santhana Gopalakrishnan, M. Chellamuthu, U. Ponnusamy Suruttaiya, E. Manikandan, Eur. J. Inorg. Chem. 2011, 5384 (2011)

    Article  Google Scholar 

  12. E. Manikandan, G. Kavitha, J. Kennedy, Ceram. Int. 40, 16065 (2014)

    Article  Google Scholar 

  13. P. Nagaraju, Y. Vijayakumar, M.V. Ramana Reddy, J. Asian Ceram. Soc. 5, 402 (2017)

    Article  Google Scholar 

  14. E. Manikandan, J. Kennedy, G. Kavitha et al., J. Alloys Compd. 647, 141 (2015)

    Article  Google Scholar 

  15. J. Zhang, H. Lu, C. Yan et al., Sens. Actuators B 264, 128 (2018)

    Article  Google Scholar 

  16. A.H. Shah, B. Ahamed, E. Manikandan, R. Chandramohan, M. Iydroose, J. Mater. Sci.: Mater. Electron. 24, 2302 (2013)

    Google Scholar 

  17. M.R. Mohammadi, D.J. Fray, Phys. E: Low-Dimens. Syst. Nanostruct. 46, 43 (2012)

    Article  Google Scholar 

  18. C.Y. Cummings, F. Marken, L.M. Peter, K.G.U. Wijayantha, A.A. Tahir, J. Am. Chem. Soc. 134, 1228 (2012)

    Article  Google Scholar 

  19. J. Liu, Z. Guo, K. Zhu, W. Wang, C. Zhang, X. Chen, J. Mater. Chem. 21, 11412 (2011)

    Article  Google Scholar 

  20. G. Kavitha, K.T. Arul, P. Babu, J. Mater. Sci.: Mater. Electron. 29, 6666 (2018)

    Google Scholar 

  21. C. Liu, H. Gao, L. Wang et al., Sens. Actuators B 252, 1153 (2017)

    Article  Google Scholar 

  22. P. Paulraj, A. Manikandan, E. Manikandan et al., J. Nanosci. Nanotechnol. 18, 3991 (2018)

    Article  Google Scholar 

  23. Y. Hajati, T. Blom, S.H.M. Jafri et al., Nanotechnology 23, 505501 (2012)

    Article  Google Scholar 

  24. E. Manikandan, V. Murugan, G. Kavitha, P. Babu, M. Maaza, Mater. Lett. 131, 225 (2014)

    Article  Google Scholar 

  25. P. Song, Q. Wang, Z. Yang, Sens. Actuators B 173, 839 (2012)

    Article  Google Scholar 

  26. B. Donkova, D. Dimitrov, M. Kostadinov, E. Mitkova, D. Mehandjiev, Mater. Chem. Phys. 123, 563 (2010)

    Article  Google Scholar 

  27. B. Choudhary, S. Chawla, K. Jayanthi, K.N. Sood, S. Singh, Curr. Appl. Phys. 10, 807 (2010)

    Article  Google Scholar 

  28. H. Song, Y. Sun, X. Jia, Ceram. Int. 41, 13224 (2015)

    Article  Google Scholar 

  29. N. Bhardwaj, A. Pandey, B. Satpati, M. Tomar, V. Gupta, S. Mohapatra, Phys. Chem. Chem. Phys. 18, 18846 (2016)

    Article  Google Scholar 

  30. R. Sankar Ganesh, E. Durgadevi, M. Navaneethan et al., J. Alloys Compd. 721, 182 (2017)

    Article  Google Scholar 

  31. R.K. Mishra, A. Kushwaha, P.P. Sahay, RSC Adv. 4, 3904 (2014)

    Article  Google Scholar 

  32. Y. Zheng, J. Wang, P. Yao, Sens. Actuators B 156, 723 (2011)

    Article  Google Scholar 

  33. L. Li, Y. Cheah, Y. Ko et al., J. Mater. Chem. A 1, 10935 (2013)

    Article  Google Scholar 

  34. X. Liu, J. Zhang, X. Guo, S. Wu, S. Wang, Sens. Actuators B 152, 162 (2011)

    Article  Google Scholar 

  35. S. Wei, M. Zhou, W. Du, Sens. Actuators B 160, 753 (2011)

    Article  Google Scholar 

  36. J.-H. Lee, Sens. Actuators B 140, 319 (2009)

    Article  Google Scholar 

  37. L. Zhang, J. Zhao, H. Lu et al., Sens. Actuators B 161, 209 (2012)

    Article  Google Scholar 

  38. N. Hongsith, E. Wongrat, T. Kerdcharoen, S. Choopun, Sens. Actuators B 144, 67 (2010)

    Article  Google Scholar 

  39. E. Dai, P. Wang, Y. Ye, Y. Cai, J. Liu, C. Liang, Mater. Lett. 211, 239 (2018)

    Article  Google Scholar 

  40. P. Sun, S. Du, T. Yang et al., RSC Adv. 3, 7112 (2013)

    Article  Google Scholar 

  41. X. Shen, Q. Liu, Z. Ji, G. Zhu, H. Zhou, K. Chen, CrystEngComm 17, 5522 (2015)

    Article  Google Scholar 

  42. Z. Jun, L. Xianghong, W. Liwei et al., Nanotechnology 22, 185501 (2011)

    Article  Google Scholar 

  43. X.B. Li, Q.Q. Zhang, S.Y. Ma, G.X. Wan, F.M. Li, X.L. Xu, Sens. Actuators B 195, 526 (2014)

    Article  Google Scholar 

  44. B. Chwieroth, B.R. Patton, Y. Wang, J. Electroceram. 6, 27 (2001)

    Article  Google Scholar 

  45. K. Grass, H.G. Lintz, J. Catal. 172, 446 (1997)

    Article  Google Scholar 

  46. S. Bose, S. Chakraborty, B.K. Ghosh, D. Das, A. Sen, H.S. Maiti, Sens. Actuators B 105, 346 (2005)

    Article  Google Scholar 

  47. W. Li, S. Ma, Y. Li et al., Sens. Actuators B 211, 392 (2015)

    Article  Google Scholar 

  48. X. Xu, J. Sun, H. Zhang et al., Sens. Actuators B 160, 858 (2011)

    Article  Google Scholar 

  49. J.P. Cheng, B.B. Wang, M.G. Zhao, F. Liu, X.B. Zhang, Sens. Actuators B 190, 78 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported the Jilin Provincial Science and Technology Department (No. 20170101199JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., He, Y., Li, S. et al. Ultra-sensitive and selective acetone gas sensor with fast response at low temperature based on Cu-doped α-Fe2O3 porous nanotubes. J Mater Sci: Mater Electron 29, 11178–11186 (2018). https://doi.org/10.1007/s10854-018-9203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9203-0

Navigation