Skip to main content

Advertisement

Log in

Behaviour of multiphase PVDF in (1−x)PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present paper deals with the synthesis and characterization of (1−x)PVDF/(x)BaTiO3 nanocomposite films with x = 0.1, 0.2, 0.3, 0.4 and 0.5. The samples were synthesized by simple solution mixing method followed by tape casting process. FESEM images show the homogeneous dispersion of BaTiO3 nanoparticles within the matrix of poly(vinylidene fluoride) (PVDF) with slight agglomeration. An improvement in the thermal stability of nanocomposite film is observed by TGA results. XRD as well as FTIR analysis indicate the α–β phase transition of PVDF in the nanocomposite films. The embedded BaTiO3 forms an intermediate band among the PVDF structures and thus decreases the band gap of nanocomposite films by absorbing the wavelength of lower energies. The band gap of nanocomposite films for x = 0.4 decreases to 2.4 eV as compared to 5.0 eV for pristine PVDF. The dielectric constant (ɛ′) of pristine PVDF at 50 Hz is 8.9, which increases to 26.7 for (0.6)PVDF/(0.4)BaTiO3 nanocomposite film. An increase in the charge storage ability is observed from PE loops, as (0.6)PVDF/(0.4)BaTiO3 nanocomposite film has highest value of polarization (0.093 µC cm−2) as compared to pristine PVDF (0.020 µC cm−2). This shows an increase in the charge storage ability of (1−x)PVDF/(x)BaTiO3 nanocomposite films as compared to pristine PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Fu, Y. Hou, M. Zheng, Q. Wei, M. Zhu, H. Yan, ACS Appl. Mater. Interfaces 7, 24480 (2015)

    Article  Google Scholar 

  2. R. Sharma, I.P. Singh, A.K. Tripathi, P.K.C. Pillai, J. Mater. Sci. 29, 995 (1994)

    Article  Google Scholar 

  3. Y. Qi, L. Pan, L. Ma, P. Liao, J. Ge, D. Zhang, Q. Zheng, B. Yu, Y. Tang, D. Sun, J. Mater. Sci.: Mater. Electron. 24, 1446 (2013)

    Google Scholar 

  4. C. Muralidhar, P.K.C. Pillai, IEEE Trans. Electr. Insul. EI-21, 501 (1986)

    Article  Google Scholar 

  5. K. Prasad, A. Prasad, K.P. Chandra, A.R. Kulkarni, Integr. Ferroelectr. 117, 55 (2010)

    Article  Google Scholar 

  6. R.K. Goyal, A.H. Namjoshi, B.B. Joshi, in 2011 International Conference on Nanoscience, Engineering and Technology (ICONSET), IEEE, p. 642 (2011)

  7. Y. Ji, J. Liu, Y. Jiang, Y. Liu, Spectrochim. Acta A 70, 297 (2008)

    Article  Google Scholar 

  8. V.P. Pavlović, V.B. Pavlović, B. Vlahović, D.K. Božanić, J.D. Pajović, R. Dojčilović, V. Djoković, Phys. Scr. T157, 014006 (2013)

    Article  Google Scholar 

  9. T.G. Mofokeng, A.S. Luyt, V.P. Pavlovic, V.B. Pavlovic, D. Dudic, B. Vlahovic, V. Djokovic, J. Appl. Phys. 115, 084109 (2014)

    Article  Google Scholar 

  10. M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W.M. Blom, D.M. de Leeuw, Nat. Mater. 12, 433 (2013)

    Article  Google Scholar 

  11. K.I. Kakimoto, K. Fukata, H. Ogawa, Sens. Actuators A 200, 21 (2013)

    Article  Google Scholar 

  12. Z.M. Dang, H.Y. Wang, B. Peng, C.W. Nan, J. Electroceram. 21, 381 (2008)

    Article  Google Scholar 

  13. S. Abdalla, A. Obaid, F.M. Al-Marzouki, Results Phys. 6, 617 (2016)

    Article  Google Scholar 

  14. B. Hilczer, J. Kulek, M. Polomska, M.D. Glinchuk, A.V. Ragulya, A. Pietraszko, Ferroelectrics 316, 31 (2005)

    Article  Google Scholar 

  15. H.-I. Hsiang, K.-Y. Lin, F.-S. Yen, C.-Y. Hwang, J. Mater. Sci. 36, 3809 (2001)

    Article  Google Scholar 

  16. O.D. Jayakumar, E.H. Abdelhamid, V. Kotari, B.P. Mandal, R. Rao, J. Jagannath, V.M. Naik, R. Naik, A.K. Tyagi, Dalton Trans. 44, 15872 (2015)

    Article  Google Scholar 

  17. Y. Kobayashi, T. Tanase, T. Tabata, T. Miwa, M. Konno, J. Eur. Ceram. Soc. 28, 117 (2008)

    Article  Google Scholar 

  18. S. Dalle Vacche, F. Oliveira, Y. Leterrier, V. Michaud, D. Damjanovic, J.-A. Manson, J. Mater. Sci. 49, 4552 (2014)

    Article  Google Scholar 

  19. G. Wang, ACS Appl. Mater. Interfaces 2, 1290 (2010)

    Article  Google Scholar 

  20. Y. Li, X. Ge, L. Wang, W. Liu, H. Li, R. Kwok Yiu Li, S. Chin Tjong, Curr. Nanosci. 9, 679 (2013)

    Article  Google Scholar 

  21. J. Fu, J. Mater. Sci. 53, 7233 (2018)

    Article  Google Scholar 

  22. Y. Li, W. Yang, S. Ding, X. Zhu, F. Rong, J. Mater. Sci.: Mater. Electron. 29, 1082 (2018)

    Google Scholar 

  23. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014)

    Article  Google Scholar 

  24. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company, Inc., Reading, 1956)

    Google Scholar 

  25. N.S. Murthy, H. Minor, C. Technology, Polymer 31, 996 (1990)

    Article  Google Scholar 

  26. V.S. Puli, R. Picchini, C. Orozco, C.V. Ramana, Chem. Phys. Lett. 649, 115 (2016)

    Article  Google Scholar 

  27. A.L. Gomes, M.B. Pinto Zakia, J.G. Filho, E. Armelin, C. Alemán, J. Sinezio de Carvalho Campos Polym. Chem. 3, 1334 (2012)

    Google Scholar 

  28. R. Gregorio, M. Cestart, F.E. Bernardino, J. Mater. Sci. 31, 2925 (1996)

    Article  Google Scholar 

  29. S. Liu, S. Xue, W. Zhang, J. Zhai, G. Chen, J. Mater. Chem. A 2, 18040 (2014)

    Article  Google Scholar 

  30. M. Sharma, K. Sharma, S. Bose, J. Phys. Chem. B 117, 8589 (2013)

    Article  Google Scholar 

  31. T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, J. Membr. Sci. 210, 315 (2002)

    Article  Google Scholar 

  32. F.J. Boerio, J.L. Koenig, J. Polym. Sci. A-2 7, 1489 (1969)

    Article  Google Scholar 

  33. B. Jiang, X. Pang, B. Li, Z. Lin, J. Am. Chem. Soc. 137, 11760 (2015)

    Article  Google Scholar 

  34. X. Yang, D. Li, Z.H. Ren, R.G. Zeng, S.Y. Gong, D.K. Zhou, H. Tian, J.X. Li, G. Xu, Z.J. Shen, G.R. Han, RSC Adv. 6, 75422 (2016)

    Article  Google Scholar 

  35. H. Bai, X. Wang, Y. Zhou, L. Zhang, Prog. Nat. Sci.: Mater. Int. 22, 250 (2012)

    Article  Google Scholar 

  36. F.O. Agyemang, F.A. Sheikh, R. Appiah-Ntiamoah, J. Chandradass, H. Kim, Ceram. Int. 41, 7066 (2015)

    Article  Google Scholar 

  37. L. Malmonge, Polymer 41, 8387 (2000)

    Article  Google Scholar 

  38. T.S. John, J.B. William, E.C.Y. William, Report: Thermal degradation of polyvinylidene fluoride and polyvinyl fluoride by oven pyrolysis (Clothing and Organic materials Lab., Massachusetts, 1968) p. 21 (1968)

  39. Z. Liu, P. Maréchal, R.J. Center, Polymer 38, 5149 (1997)

    Article  Google Scholar 

  40. S. Cho, J.S. Lee, J. Jang, Adv. Mater. Interfaces 2, 1 (2015)

    Article  Google Scholar 

  41. F.Z.E. Sagrili, C. Unsal, E.S. Kayali, A.S. Sarac, React. Funct. Polym. 100, 1 (2016)

    Article  Google Scholar 

  42. Z. Pengjun, W. Lei, B. Liang, X. Jinbao, C. Aimin, X. Xinqian, X. Fanglong, Z. Jiaqi, J. Mater. Sci. Technol. 31, 223 (2015)

    Article  Google Scholar 

  43. H. Acar, M. Karakişla, M. Saçak, Mater. Sci. Semicond. Process. 16, 845 (2013)

    Article  Google Scholar 

  44. G. Ashish, S.K. Anuraj, B. Shaibal, D. Vishwasand, K. Pawan, J. Mater. Sci. Nanotechnol. 4, 105 (2016)

    Google Scholar 

  45. C.V. Chanmal, J.P. Jog, Express Polym. Lett. 2, 294 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Inter University Accelerator Centre, New Delhi (Project No. UFR-61314). The Materials Research Centre, MNIT Jaipur is also acknowledged for providing the FESEM, TGA, Raman and Impedance Analyzer facilities. The authors are also thankful to Dr. Sohan Lal and Mr. Anil K. Astakala for their valuable contribution to the completion of this work.

Funding

This study was funded by Inter University Accelerator Centre, New Delhi (Project No. UFR-61314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandakini Sharma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Quamara, J.K. & Gaur, A. Behaviour of multiphase PVDF in (1−x)PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties. J Mater Sci: Mater Electron 29, 10875–10884 (2018). https://doi.org/10.1007/s10854-018-9163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9163-4

Navigation