Skip to main content
Log in

Study of structural, thermal and piezoelectric properties of polyvinylidene fluoride –BaZrO3 nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thin film of nanocomposites was prepared by solution casting methods and characterized by UV–Vis spectra, Raman spectra and scanning electron microscopy (SEM). The optical band gap was determined by Tau plots. The band gap of PVDF was determined with and without BaZrO3 nanoparticles. It could be seen that the band gap decreases from 4.98 to 3.32 eV in the presence of BaZrO3 nanoparticles in PVDF matrix. The Raman study identifies the interacting species with PVDF due to structural change by the addition of BaZrO3 nanoparticles. This helps to understand the potential of new nanocomposites. The structural changes were analyzed by crystallinity, nature of bonds, phase transition from G to B-phase, etc. SEM images represent the change in spherulitic morphology of PVDF by incorporation of BaZrO3 nanoparticles. SEM images are presented the aggregation of BaZrO3 nanoparticles in PVDF matrix causes the generation of larger particles in PVDF chain. DSC supports the crystallization of PVDF nanocomposites upon heating due to the rearrangement of PVDF structure in the presence of BaZrO3 nanoparticles. It is observed that BaZrO3 nanoparticles enrich the structural, thermal and piezoelectric properties due to the change in spherulitic morphology, which creates a large number of micro- to nano-sized pores, increases the β-phase content of the PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim M-S, Ahn H-R, Lee S, Kim C, Kim Y-J. A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique. Sens Actuators A Phys. 2014;212:151–8.

    CAS  Google Scholar 

  2. Beringer LT, Xu X, Shih W, Shih WH, Schauer CL. Optimization of an electrospun PVDF-TrFe fiber sensor platform for biological applications. Sens Actuators A. 2015;222:293–300.

    CAS  Google Scholar 

  3. Mei H, Wang R, Feng J, Xia Y, Zhang T. A flexible pressure-sensitive array based on soft substrate. Sens Actuators A. 2015;222:80–6.

    CAS  Google Scholar 

  4. Cho Y, Park JB, Kim BS, Lee J, Hong WK, Park IK, Jang JE, Sohn JI, Cha S, Kim JM. Enhanced energy harvesting based on surface morphology engineering of P(VDF-TrFE) film. Nano Energy. 2015;16:524–32.

    CAS  Google Scholar 

  5. Zampetti E, Macagnano A. Flexible piezoelectric transducer based on electrospun PVDF nanofibers for sensing applications. Procedia Eng. 2014;87:1509–12.

    CAS  Google Scholar 

  6. Bayramol DV, Soin N, Shah T, Siores E, Matsouka D, Vassiliadis S. Energy harvesting smart textiles. Blacksburg: Springer; 2017.

    Google Scholar 

  7. Lang C, Fang J, Shao H, Ding X, Lin T. High-sensitivity acoustic sensors from nanofibre webs. Nat Commun. 2016;7:11108.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Priya S, Song HC, Zhou Y, Varghese R. A review on piezoelectric energy harvesting: materials, methods, and circuits. J Energy Harvest Syst. 2017;4:3.

    Google Scholar 

  9. Chen C, Bai Z, Cao Y, Dong M, Jiang K, Zhou Y. Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Compos Sci Technol. 2020;192:108100.

    CAS  Google Scholar 

  10. Singh V, Singh B. Fabrication of PVDF-transition metal dichalcogenides based flexible piezoelectric nanogenerator for energy harvesting applications. Mater Today Proc. 2020;28:282–5.

    CAS  Google Scholar 

  11. Song L, Huang Q, Huang Y, Bi R, Xiao C. An electro-thermal braid-reinforced PVDF hollow fiber membrane for vacuum membrane distillation. J Membr Sci. 2019;591:117359.

    Google Scholar 

  12. Al-Osaimi J, Al-Hosiny N, Abdallah S, Badawi A. Characterization of optical, thermal and electrical properties of SWCNTs/PMMA nanocomposite films. Iran Polym J Engl Ed. 2014;23:437–43.

    CAS  Google Scholar 

  13. Badawi A, Ahmed EM, Mostafa NY, Alomairy SE. Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J Mater Sci Mater Electron. 2017;28:10877–84.

    CAS  Google Scholar 

  14. Badawi A, Alharthi SS, Mostafa NY, Althobaiti MG, Altalhi T. Effect of carbon quantum dots on the optical and electrical properties of polyvinylidene fluoride polymer for optoelectronic applications. Appl Phys A. 2019;125:858.

    CAS  Google Scholar 

  15. Indolia AP, Gaur MS. Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J Therm Anal Calorim. 2012;113(2):821–30.

    Google Scholar 

  16. Suma GR, Subramani NK, Shilpa KN, Sachhidananda S, Satyanarayana SV. Effect of Ce0.5Zr0.5O2 nano fillers on structural and optical behaviors of poly(vinyl alcohol). J Mater Sci Mater Electron. 2017;28:10707–14.

    CAS  Google Scholar 

  17. Bai Y, Cheng ZY, Zhang QM. High-dielectric-constant ceramic- powder polymer composites. Appl Phys Lett. 2000;76:3804.

    CAS  Google Scholar 

  18. Arbatti M, Shan X, Cheng ZY. Ceramic–polymer composites with high dielectric constant. Adv Mater. 2007;19:1369–72.

    CAS  Google Scholar 

  19. Khatun F, Thakur P, Hoque NA, Kool A, Roy S, Biswas P, Bagchi B, Das S. In situ synthesized electroactive and large dielectric BaF2/PVDF nanocomposite film for superior and highly durable self-charged hybrid photo-power cell. Energy Convers Manag. 2018;171:1083–92.

    CAS  Google Scholar 

  20. Dutta B, Kar E, Bose N, Mukherjee S. Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles. RSC Adv. 2015;5:105422–34.

    CAS  Google Scholar 

  21. Dutta B, Kar E, Bose N, Mukherjee S. Smart, lightweight, flexible NiO/poly(vinylidene flouride) nanocomposites film with significantly enhanced dielectric, piezoelectric and EMI shielding properties. J Polym Res. 2017;24:220.

    Google Scholar 

  22. Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z. Formation mechanism of β- phase in PVDF/CNT composite prepared by the sonication method. Macromolecules. 2009;42:8870–4.

    CAS  Google Scholar 

  23. Gaur MS, Singh PK, Ali A, Singh R. Thermally stimulated discharge current (TSDC) characteristics in β-phase PVDF–BaTiO3 nanocomposites. J Therm Anal Calorim. 2014;117(3):1407–17.

    CAS  Google Scholar 

  24. Kar E, Bose N, Das S, Mukherjee N, Mukherjee S. Temperature dependent dielectric properties of self-standing and flexible poly(vinylidene fluoride) films infused with Er3+ doped GeO2 and SiO2 nanoparticles. J Appl Polym Sci. 2016;133:44016.

    Google Scholar 

  25. Mohanty HS, Kumar A, Kulriya PK, Thomas R, Pradhan DK. Dielectric/ferroelectric properties of ferroelectric ceramic dispersed poly (vinylidene fluoride) with enhanced β-phase formation. Mater Chem Phys. 2019;230:221–30.

    CAS  Google Scholar 

  26. Uchino K. Advanced piezoelectric materials: science and technology. Philadelphia: Wood head Publishing; 2010.

    Google Scholar 

  27. Cai E, Liu Q, Zhou S, Zhu Y, Xue A. Structure, piezoelectric, dielectric and ferroelectric properties of lead-free (1–x)(Ba0.85 Ca0.15)(Ti0.93 Zr0.07)O3–x(Bi0.5 K0.5)TiO3 ceramics. J Alloys Compd. 2017;726:1168–78.

    CAS  Google Scholar 

  28. Mayeen A, Kala MS, Sunija S, Rouxel D, Bhowmik RN, Thomas S, Kalarikkal N. Flexible dopamine-functionalized BaTiO3/BaTiZrO3/BaZrO3-PVDF ferroelectric nanofibers for electrical energy storage. J Alloys Compd. 2020;837:155492.

    CAS  Google Scholar 

  29. Huaying L, Hern K. Thermal degradation and kinetic analysis of PVDF/modified MMT nanocomposite membranes. Desalination. 2008;234:9–15.

    Google Scholar 

  30. Bertini F, Canetti M, Audisio G, Costa G, Falqui L. Characterization and thermal degradation of propylene-montmorillonite nanocomposites. Polym Degrad Stab. 2006;91:600–5.

    CAS  Google Scholar 

  31. Dobkowski Z. Thermal analysis techniques for characterization of polymer materials. Polym Degrad Stab. 2006;91:488–93.

    CAS  Google Scholar 

  32. Lopes A, Costa CM, Tavares C, Neves I, Lanceros MS. Nucleation of the electroactive phase and enhancement of the optical transparency in low filler content poly(vinylidene)/clay nanocomposites. J Phys Chem C. 2011;115:18076–82.

    CAS  Google Scholar 

  33. Martins P, Lopes A, Lanceros MS. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci. 2014;39:683–706.

    CAS  Google Scholar 

  34. Sajkiewicz P, Wasiak A, Gocłowski Z. Phase transitions during stretching of poly(vinylidene fluoride). Eur Polym. 1999;35:423–9.

    CAS  Google Scholar 

  35. Huang Li X, Yang C, Cheng Y. Thermal reaction properties of aluminum/copper (II) oxide/poly(vinylidene fluoride) nanocomposite. J Therm Anal Calorim. 2015;124(2):899–907.

    Google Scholar 

  36. Boccaccio T, Bottino A, Capannelli G, Piaggio P. Characterization of PVDF membranes by vibrational spectroscopy. J Membr Sci. 2002;210:315–29.

    CAS  Google Scholar 

  37. Imamura R, Silva A, Gregorio R. Phase transformation induced in poly(vinylidene fluoride) by stretching. J Appl Polym Sci. 2008;110:3242–6.

    CAS  Google Scholar 

  38. Sagar R, Gaur SS, Gaur MS. Effect of BaZrO3 nanoparticles on pyroelectric properties of polyvinylidene fluoride (PVDF). J Ther Anal Calorim. 2016;128:1235–9.

    Google Scholar 

  39. Sagar R, Gaur MS, Rogachev AA. Piezoelectric and pyroelectric properties of ceramic nanoparticles-based nanostructured PVDF/PVC blend nanocomposites. J Therm Analys Calorim. 2020. https://doi.org/10.1007/s10973-020-09979-z.

    Article  Google Scholar 

  40. Kumar R, Ali SA, Mahur AK, Virk HS, Singh F, Khan SA, Avasthi DK, Prasad R. Study of optical band gap and carbonaceous clusters in swift heavy ion irradiated polymers with UV–vis spectroscopy science direct. Nucl Instrum Meth Phys Res B. 2008;266:1788–92.

    CAS  Google Scholar 

  41. Kim H, Baik DH, Gyu Y. Structures, electrical, and dielectric properties of PVDF-based nanocomposite films reinforced with neat multi-walled carbon nanotube. Macromol Res. 2012;20:920–7.

    CAS  Google Scholar 

  42. Guirguis OW, Manel TH. Optical study of poly (vinyl alcohol)/hydroxypropyl methylcellulose blends. J Mater Sci. 2011;46:5775–89.

    CAS  Google Scholar 

  43. Tsai FC, Chang CC, Liu LC, Chen WC, Jenekhe SA. New thiophene-linked conjugated poly(azomethine)s: theoretical electronic structure. Synthes Prop Macrmol. 2005;38:1958.

    CAS  Google Scholar 

  44. Baig U, Gondal MA, Ilyas AM, Sanagi MM. Band gap engineered polymeric-inorganic nanocomposite catalysts: synthesis, isothermal stability, photocatalytic activity and photovoltaic performance. J Mater Sci Technol. 2017;33:547–57.

    CAS  Google Scholar 

  45. Ibrahim S, Ahmad R, Joha MR. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube. J Chemilumi. 2012;132:147–52.

    CAS  Google Scholar 

  46. Ammar AH, Farag AAM, Abo-Ghazala MS. Influence of Sb addition on the structural and optical characteristics of thermally vacuum evaporated Sb x Se 1–x thin films. J Alloy Compd. 2017;694:752–60.

    CAS  Google Scholar 

  47. Kumar R, Singh P. UV–visible and infrared spectroscopic studies of Li3+ and C5+ irradiated PADC polymer. Result Phys. 2013;3:122–8.

    Google Scholar 

  48. Miodyńska M, Bajorowicz B, Mazierski P, Lisowski W, Klimczuk T, Winiarski MJ. Preparation and photocatalytic properties of BaZrO3 and SrZrO3 modified with Cu2 O/Bi2O3 quantum dots. Solid State Sci. 2017;74:13–23.

    Google Scholar 

  49. Anagnostopoulos G, Androulidakis C, Koukaras E, Tsoukleri GN. Stress transfer mechanisms at the submicron level for graphene/polymer systems. Appl Mater Interface. 2015;7:4216–23.

    CAS  Google Scholar 

  50. Colomban P. Understanding the nano—and macromechanical behaviour, the failure and fatigue mechanisms of advanced and natural polymer fibres by Raman/IR microspectrometry. Adv Nat Sci Nanosci Nanotechnol. 2013;4:13001.

    CAS  Google Scholar 

  51. Lovinger AJ. Ferroelectric polymers. Science. 1983;220:1115–21.

    CAS  PubMed  Google Scholar 

  52. Lando JB, Peterlin A. Nuclear magnetic resonance and x-ray determination of the structure of poly(vinylidene fluoride). J Poly Sci Part A. 1966;4:941–51.

    CAS  Google Scholar 

  53. Scheinbeim J, Nakafuku C, Pae KD. High-pressure crystallization of poly(vinylidene fluoride). J Appl Phy. 1979;50:4399–405.

    CAS  Google Scholar 

  54. Chen S, Yao K, Tay FEH, Liow CL. Ferroelectric poly(vinylidene fluoride) thin films on Si substrate with the β phase promoted by hydrated magnesium nitrate. J Appl Phys. 2007;102:104108.

    Google Scholar 

  55. Lopes AC, Costa CM, Tavares CJ. Nucleation of the electroactive γ phase and enhancement of the optical transparency in low filler content Poly(vinylidene)/Clay Nanocomposites. J Phys Chem C. 2011;115:18076–82.

    CAS  Google Scholar 

  56. Gomes J, Nunes JS, Sencadas V. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct. 2010;19:65010–65010.

    Google Scholar 

  57. Rahul N, Somasekhara RT. Self-powered flexible piezoelectric nanogenerator made of poly (vinylidene fluoride)/Zirconium oxide nanocomposites. Mater Res Express. 2019;6:115330.

    Google Scholar 

  58. Mohanty HS, Kumar A, Kulriya PK, Thomas R, Pradhan DK. Dielectric/ferroelectric properties of ferroelectric ceramic dispersed poly (vinylidene fluoride) with enhanced β-phase formation. Mater Chem Phys. 2019;230:221–30.

    CAS  Google Scholar 

  59. Elashmawi IS, Gaabour L. Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Result Phys. 2015;5:105–10.

    Google Scholar 

  60. Lederle F, Härter C, Beuermann S. Inducing β phase crystallinity of PVDF homopolymer, blends and block copolymers by anti-solvent crystallization. J Fluor Chem. 2020;12:109510–22.

    Google Scholar 

  61. Qing G, Cao GZ, Shen Y. Measurements of piezoelectric coefficient d33 of lead zirconate titanate thin films using a mini force hammer. J Vib Acoust. 2013;135:011003–11.

    Google Scholar 

  62. You Y, Huang X, Pu Z, Jia K, Liu X. Enhanced crystallinity, mechanical and dielectric properties of biphenyl polyarylene ether nitriles by unidirectional hot-stretching. J Polym Res. 2015;22:221.

    Google Scholar 

  63. You Y, Wei R, Yang R, Yang W, Hua X, Liu X. Crystallization behaviors of polyarylene ether nitrile filled in multi-walled carbon nanotubes. RSC Adv. 2016;6:70877–83.

    CAS  Google Scholar 

  64. Du YouY, X, Mao H, Tang X, Wei R, Liu X. Synergistic enhancement ofmechanical, crystalline and dielectric properties of polyarylene ether nitrile-based nanocomposites by unidirectional hot stretching-quenching. Polym Int. 2017;66:1151–8.

    Google Scholar 

  65. Agarwal H, Yadav S, Jaiswar G. Effect of nanoclay and barium sulfate nanoparticles on the thermal and morphological properties of polyvinylidene fluoride nanocomposites. J Therm Anal Calorim. 2017;129(3):1471–9.

    CAS  Google Scholar 

  66. Kao KC. Dielectric phenomena in. Solids1st ed. San Diego: Elsevier Academic Press,; 2004. p. 579.

    Google Scholar 

  67. Wang TT, Herbert JM, Glass AM. The applications of ferroelectric polymers. 1st ed. New York: Blackie; 1988.

    Google Scholar 

  68. Lines M, Glass A. Principles and applications of ferroelectrics and related materials. Oxford: Oxford Clarendon Press; 1977.

    Google Scholar 

  69. Dang DM, Zhou T, Yao SH. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater. 2009;21:2077–82.

    CAS  Google Scholar 

  70. Prakash BS, Varma KBR. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. Compos Sci Tech. 2007;67:2363–8.

    CAS  Google Scholar 

  71. Srivastava A, Maiti P, Parkash O. Mechanical and dielectric properties of CaCu3Ti4O12 and La doped CaCu3Ti4O12 poly(vinylidene fluoride) composites. Compos Sci Tech. 2014;93:83–9.

    CAS  Google Scholar 

  72. Srivastava A, Jana KK, Parkash O. Mechanical and dielectric behaviour of CaCu3Ti4O12 and Nb doped CaCu3Ti4O12 poly(vinylidene fluoride) composites. J Compos. 2014;52:769379–89.

    Google Scholar 

  73. Sajkiewicz P, Wasiak A. Phase transitions during stretching of poly (vinylidene fluoride). Eur Polym. 1999;35:423–9.

    CAS  Google Scholar 

  74. Neidh FM, Beaume F. Structural evolution of PVDF during storage or annealing. Polymer. 2004;45:1679–88.

    Google Scholar 

Download references

Acknowledgements

Financial assistance from Aeronautics R&D Board, DRDO New Delhi-110 011 India (Letter no. ARDB/01 l1051902l/M/l), is gratefully acknowledged). We are also thankful to Director IUAC, New Delhi for providing characterization facilities. One of the authors Rohan Sagar acknowledges the University Grant Commission (UGC), New Delhi (India) for a providing research fellowship (RGNF-2017-18-SC-UTT-29088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Gaur.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, R., Gaur, M.S. & Raghav, R.K. Study of structural, thermal and piezoelectric properties of polyvinylidene fluoride –BaZrO3 nanocomposites. J Therm Anal Calorim 147, 10371–10381 (2022). https://doi.org/10.1007/s10973-022-11302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11302-x

Keywords

Navigation