Skip to main content
Log in

Effect of Li+ co-doping on structural and luminescence properties of Mn4+ activated magnesium titanate films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of Li+ co-doping on crystal phase formation and photoluminescence (PL) of Mn4+ activated magnesium titanate films produced by a solid state reaction method at different temperatures (800–1200 °C) has been investigated by using X-ray diffraction (XRD), diffuse reflectance and PL spectroscopy. The chemical composition of sintered films was estimated by energy dispersive X-ray spectroscopy. The concentration of Mn impurity estimated by Electron spin resonance was about 5 × 1016 cm−3. The XRD study of the annealed films revealed several magnesium titanate crystal phases, such as Mg2TiO4, MgTiO3 and MgTi2O5. The contribution of each phase depended strongly on the annealing temperature and the presence of Li+ additive. Furthermore, Li+ co-doping facilitated the formation of both MgTiO3 and Mg2TiO4 phases, especially at lower annealing temperatures. The PL spectra showed two bands centered at 660 and 710 nm and ascribed to the 2E → 4A2 spin-forbidden transition of the Mn4+ ion in the Mg2TiO4 and MgTiO3, respectively. In Li co-doped films, the integrated intensity of Mn4+ luminescence was found several times stronger compared to Li-undoped films that was ascribed mainly to flux effect of lithium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Chen, Y. Zhou, J. Zhong, RSC Adv. 6, 86285 (2016)

    Article  Google Scholar 

  2. Z. Zhou, N. Zhou, M. Xia, Y. Meiso, H.T.B. Hintzen, J. Mater. Chem. C 4, 9143 (2016)

    Article  Google Scholar 

  3. T.-M. Chen, J.T. Luo, United States Patent, US 7(846), 350 B2 (2010)

  4. X. Huang, Nat. Photonics 8, 748 (2014)

    Article  Google Scholar 

  5. G. Li, Y. Tian, Y. Zhao, J. Lin, Chem. Soc. Rev. 44, 8688 (2015)

    Article  Google Scholar 

  6. T. Ye, S. Li, X. Wu, M. Xu, X. Wei, K. Wang, H. Bao, J. Wang, J. Chen, J. Mater. Chem. C 1, 4327 (2013)

    Article  Google Scholar 

  7. M.M. Medic, M.G. Brik, G. Drazic, Z.M. Antic, V.M. Lojpur, M.D. Dramicanin, J. Phys. Chem. C 119, 724 (2015)

    Article  Google Scholar 

  8. S. Kawakita, H. Kominami, K. Hara, Phys. Status Solidi C 12, 805 (2015)

    Article  Google Scholar 

  9. Z. Qiu, T. Luo, J. Zhang, W. Zhou, L. Yu, S. Lian, J. Lumin. 158, 130 (2015)

    Article  Google Scholar 

  10. J. Lu, Y. Pan, J. Wang, X. Chen, S. Huang, G. Liu, RSC Adv. 3, 4510 (2013)

    Article  Google Scholar 

  11. R. Cao, J. Huang, X. Ceng, Z. Luo, W. Ruan, Q. Hu, Ceram. Int. 42, 13296 (2016)

    Article  Google Scholar 

  12. M. Peng, X. Yin, P.A. Tanner, M.G. Brik, P. Li, Chem. Mater. 27, 2938 (2015)

    Article  Google Scholar 

  13. J. Long, Y. Wang, R. Ma, C. Ma, X. Yuan, Z. Wen, M. Du, Y. Cao, Inorg. Chem. 56, 3269 (2017)

    Article  Google Scholar 

  14. Y.X. Pan, G.K. Liu, J. Lumin. 131, 465 (2011)

    Article  Google Scholar 

  15. D. Chen, Y. Zhou, W. Xu, J. Zhong, Z. Ji, W. Xiang, J. Mater. Chem. C 4, 1704 (2016)

    Article  Google Scholar 

  16. T. Murata, T. Tanoue, M. Iwasaki, K. Morinaga, T. Hase, J. Lumin. 114, 207 (2005)

    Article  Google Scholar 

  17. K. Seki, S. Kamei, K. Uematsu, T. Ishigaki, K. Toda, M. Sato, J. Ceram. Process. Res. 14, s67 (2013)

    Google Scholar 

  18. M.G. Brik, Y.X. Pan, G.K. Liu, J. Alloys Compd. 509, 1452 (2011)

    Article  Google Scholar 

  19. M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, N. Mc, N. Alford, J. Eur. Ceram. Soc. 26, 2777 (2006)

    Article  Google Scholar 

  20. Yi-D. Zhang, Di Zhou, N. Alford, J. Am. Ceram. Soc. 99, 3645 (2016)

    Article  Google Scholar 

  21. J. Bernard, D. Houivet, M. Hervieu, J.M. Haussonne, Solid State Sci. 8, 598 (2006)

    Article  Google Scholar 

  22. G. Kortüm, W. Braun, G. Herzog, Angew. Chem. Int. Edit. 2, 333 (1963)

    Article  Google Scholar 

  23. M.A. Petrova, G.A. Mikirticheva, A.S. Novikova, V.F. Popova, J. Mater. Res. 12, 2584 (1997)

    Article  Google Scholar 

  24. M. Landmann, E. Rauls, W.G. Schmidt, J. Phys. 24, 195503 (2012)

    Google Scholar 

  25. J. Tauc, A. Menth, J. Non-Cryst. Solids 8–10, 569 (1972)

    Article  Google Scholar 

  26. T.S. Kumar, R.K. Bhuyan, D. Pamu, Appl. Surf. Sci. 264, 184 (2013)

    Article  Google Scholar 

  27. R.K. Bhuyan, T.S. Kumar, A. Perumal, S. Ravi, D. Pamu, Surf. Coat. Technol. 221, 196 (2013)

    Article  Google Scholar 

  28. V. Đorđević, M.G. Brik, A.M. Srivastava, M. Medić, P. Vulić, E. Glais, B. Viana, M.D. Dramićanin, Opt. Mater. 74, 46 (2017)

    Article  Google Scholar 

  29. J. Long, C. Ma, Y. Wang, X. Yuan, M. Du, R. Ma, Z. Wen, J. Zhang, Y. Cao, Mat. Res. Bull. 85, 234 (2017)

    Article  Google Scholar 

  30. R. Louat, A. Louat, E. Duval, Phys. Status Solidi B 46, 559 (1971)

    Article  Google Scholar 

  31. M.G. Brik, S.J. Camardello, A.M. Srivastava, ECS J. Solid State Sci. Technol. 4, R39 (2015)

    Article  Google Scholar 

  32. J.R. Ramya, K.T. Arul, K. Elayaraja, S.N. Kalkura, Ceram. Int. 40, 16707 (2014)

    Article  Google Scholar 

  33. K.T. Arul, E. Kolanthai, E. Manikandan, G.M. Bhalerao, V.S. Chandra, J.R. Ramya, U.K. Mudali, K.G.M. Nair, S.N. Kalkura, Mat. Res. Bull. 67, 55 (2015)

    Article  Google Scholar 

  34. L. Khomenkova, V.I. Kushnirenko, M.M. Osipyonok, O.F. Syngaivsky, T.V. Zashivailo, G.S. Pekar, Y.O. Polishchuk, V.P. Kladko, L.V. Borkovska, Phys. Status Solidi C 12, 1144 (2015)

    Article  Google Scholar 

  35. J. Chen, C. Li, Z. Hui, Y. Liu, Inorg. Chem. 56, 1144 (2017)

    Article  Google Scholar 

  36. J. Zhou, Y. Wang, B. Liu, J. Liu, J. Phys. Chem. Solids. 72, 995 (2011)

    Article  Google Scholar 

  37. A. Lacanilao, G. Wallez, L. Mazerolles, V. Buissette, T. Le Mercier, F. Aurissergues, M.-F. Trichet, N. Dupre´, B. Pavageau, L. Servant, B. Viana, Mat. Res. Bull. 48, 2960 (2013)

    Article  Google Scholar 

  38. D. Kim, K.-W. Jeon, J.S. Jin, S.-G. Kang, D.-K. Seo, J.-C. Park, RSC Adv. 5, 105339 (2015)

    Article  Google Scholar 

  39. S.M. Rafiaei, Mater. Sci. 34, 780 (2016)

    Google Scholar 

  40. S. Khan, H. Choi, S.Y. Lee, K.-R. Lee, O.M. Ntwaeaborwa, S. Kim, S.-H. Cho, Inorg. Chem. 56, 12139 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported via Bilateral DNIPRO program (project M/7-2017 in Ukraine and #37884WC in France) funded by the Ministry of Education and Research of Ukraine, by the Ministries of Foreign Affairs and International Development (MAEDI) and the Ministry of Education, Higher Education and of Research (MENESR) in France, as well as by National Academy of Sciences of Ukraine (project III-10-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Borkovska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkovska, L., Khomenkova, L., Markevich, I. et al. Effect of Li+ co-doping on structural and luminescence properties of Mn4+ activated magnesium titanate films. J Mater Sci: Mater Electron 29, 15613–15620 (2018). https://doi.org/10.1007/s10854-018-9153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9153-6

Navigation