Skip to main content
Log in

Study of Mn ion charge state in Zn2TiO4 and its impact on the photoluminescence and optical absorption spectra

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Zn2TiO4 ceramics doped with manganese of nominal content from 0.0016 to 1.6 mol% were produced by a solid-state reaction and investigated by the X-ray diffraction, photoluminescence (PL), diffuse reflectance spectroscopy and electron paramagnetic resonance (EPR) methods. The influence of sintering conditions (annealing temperature in the range of 800–1200 °C and atmosphere, Mn concentration) on Mn charge state and red PL has been studied. All samples contained a spinel Zn2TiO4 crystal phase with a minor amount of ZnO. The ceramics showed a PL band peaked at 680 nm, which was ascribed to 2Eg → 4A2g transition of Mn4+Ti in the Zn2TiO4. The PL intensity increased with annealing temperature and Mn concentration. The highest PL intensity was found in the samples with 0.1 mol% Mn sintered at 1100 °C. In the EPR spectra, the signals ascribed to residual Cr3+ in the Zn2TiO4, Mn2+ in the ZnO (g = 2.0014, = 74.1 × 10−4 cm−1, b20  = 235 × 10−4 сm−1) and Mn2+ in the Zn2TiO4 (g = 1.987, = 74.510 × 10−4 сm−1, b20 = 45 × 10−4 сm−1) were detected. The intensity of EPR signal due to Mn2+ in the Zn2TiO4 increased noticeably in the samples with 1.0 mol% Mn and in those sintered at 1200 °C. This was accompanied by the decrease of Mn4+ PL intensity. It is concluded that manganese dopes the Zn2TiO4 as both Mn4+ and Mn2+, the Mn2+ incorporation is strongly promoted by high annealing temperature (> 1100 °C) and high Mn concentration (~ 1 mol%). It is proposed that optical absorption of Mn-doped Zn2TiO ceramics in the visible spectral range is determined by spin allowed transition of Mn4+Ti and Mn2+/3+ donor-type photoionization transition in the Zn2TiO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H.T. Kim, S. Nahm, J.D. Byun, Y. Kim, J. Am. Ceram. Soc. 82, 3476 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02268.x

    Article  CAS  Google Scholar 

  2. O. Yamaguchi, M. Morimi, H. Kawabata, K. Shimizu, J. Am. Ceram. Soc. 70, 97 (1987). https://doi.org/10.1111/j.1151-2916.1987.tb05011.x

    Article  Google Scholar 

  3. F.H. Dulin, D.E. Rase, J. Am. Ceram. Soc. 43, 125 (1960). https://doi.org/10.1111/j.1151-2916.1960.tb14326.x

    Article  CAS  Google Scholar 

  4. R.A. Eppler, J. Am. Ceram. Soc. 66, 794 (1983). https://doi.org/10.1111/j.11512916.1983.tb10565.x

    Article  CAS  Google Scholar 

  5. S.C. Souza, M.A.F. Souza, S.J.G. Lima, M.R. Cassia-Santos, V.J. Fernandes Jr., L.E.B. Soledade, E. Longo, A.G. Souza, I.M.G. Santos, J. Therm. Anal. Calorim. 79, 455 (2005). https://doi.org/10.1007/s10973-005-0084-0

    Article  CAS  Google Scholar 

  6. S. Manchala, L.R. Nagappagari, S.M. Venkatakrishnan, V. Shanker, Int. J. Hydrog. Energy 43, 13145 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.035

    Article  CAS  Google Scholar 

  7. J. Lu, D. Li, Y. Chai, L. Li, M. Li, Y. Zhang, J. Liang, Appl. Catal. B 256, 117800 (2019). https://doi.org/10.1016/j.apcatb.2019.117800

    Article  CAS  Google Scholar 

  8. K. Jothimurugesan, S.K. Gangwal, Ind. Eng. Chem. Res. 37, 1929 (1998). https://doi.org/10.1021/ie970857d

    Article  CAS  Google Scholar 

  9. H.K. Jun, T.J. Lee, S.O. Ryu, J.C. Kim, Ind. Eng. Chem. Res. 40, 3547 (2001). https://doi.org/10.1021/ie0011167

    Article  CAS  Google Scholar 

  10. I. Gaidan, D. Brabazon, I. Ul Ahad, Sensors 17, 1995 (2017). https://doi.org/10.3390/s17091995

    Article  CAS  Google Scholar 

  11. K. Sarkar, E.V. Braden, T. Fröschl, N. Hüsing, P. Müller-Buschbaum, J. Mater. Chem. A 2, 15008 (2014). https://doi.org/10.1039/C4TA02031F

    Article  CAS  Google Scholar 

  12. S.-X. Chen, S.-P. Chang, W.-K. Hsieh, S.-J. Chang, C.-C. Lin, RSC Adv. 8, 17622 (2018). https://doi.org/10.1039/C8RA03181A

    Article  CAS  Google Scholar 

  13. M.C. Han, L.L. Zhu, S.Y. Jiao, T.F. Yi, P. Cui, Y. Shi, Adv. Sustain. Syst. 5, 2100149 (2021). https://doi.org/10.1002/adsu.202100149

    Article  CAS  Google Scholar 

  14. S. Butee, A.R. Kulkarni, O. Prakash, R.P.R.C. Aiyar, K. Sudheendran, K.C. Raju James, Mater. Sci. Eng. B 168, 151 (2010). https://doi.org/10.1016/j.mseb.2009.11.007

    Article  CAS  Google Scholar 

  15. B. Lokesh, N.M. Rao, J. Mater. Sci. 27, 4253 (2016). https://doi.org/10.1007/s10854-016-4290-2

    Article  CAS  Google Scholar 

  16. K.M. Girish, S.C. Prashantha, H. Nagabhushana, C.R. Ravikumar, H.P. Nagaswarupa, R. Naik, H.B. Premakumar, B. Umesh, J. Sci. 3, 151 (2018). https://doi.org/10.1016/j.jsamd.2018.02.001

    Article  Google Scholar 

  17. J.S. Jang, P.H. Borse, J.S. Lee, K.T. Lim, Ok.-S. Jung, E.D. Jeong, J.S. Bae, M.S. Won, H.G. Kim, Bull. Korean Chem. Soc. 30, 3021 (2009). https://doi.org/10.5012/bkcs.2009.30.12.3021

    Article  CAS  Google Scholar 

  18. K.M. Girish, S.C. Prashantha, R. Naik, H. Nagabhushana, H.P. Nagaswarupa, H.B. Premakumar, S.C. Sharma, K.S.A. Raju, Mater. Res. Express 3, 075015 (2016). https://doi.org/10.1088/2053-1591/3/7/075015

    Article  CAS  Google Scholar 

  19. J. Mra´zek, L. Spanhel, G. Chadeyron, V. Mateˇjec, J. Phys. Chem. C 114, 2843 (2010). https://doi.org/10.1021/jp9036217

    Article  CAS  Google Scholar 

  20. K.M. Girish, R. Naik, S.C. Prashantha, H. Nagabhushana, H.P. Nagaswarupa, K.S. Anantha Raju, H.B. Premkumar, S.C. Sharma, B.M. Nagabhushana, J. Alloy. Compd. 138, 857 (2015). https://doi.org/10.1016/j.saa.2014.10.097

    Article  CAS  Google Scholar 

  21. R. Dittmann, Z. Phys. A 216, 183 (1968). https://doi.org/10.1007/BF01390958

    Article  CAS  Google Scholar 

  22. R. Dittmann, D. Hahn, Z. Phys. A 207, 484 (1967). https://doi.org/10.1007/BF01326364

    Article  CAS  Google Scholar 

  23. T.-M. Chen, J.T. Luo, Highly saturated red-emitting Mn(IV) activated phosphors and method of fabricating the same. US patent 7,846,350 B2. http://hdl.handle.net/11536/104690 (2010)

  24. L. Borkovska, L. Khomenkova, T. Stara, I. Vorona, V. Nosenko, O. Gudymenko, V. Kladko, K. Kozoriz, C. Labb´e, J. Cardin, J.-L. Doualan, T. Kryshtab, Mater. Today Commun. 27, 102373 (2021). https://doi.org/10.1016/j.mtcomm.2021.102373

    Article  CAS  Google Scholar 

  25. L.P. Sosman, A. Lopez, A.R. Camara, S.S. Pedro, I.C.S. Carvalho, N. Cella, J. Electron. Mater. 46, 6848 (2017). https://doi.org/10.1007/s11664-017-5742-z

    Article  CAS  Google Scholar 

  26. A. Lopez, S.S. Pedro, A.R. Camara, A.D. Tavares Jr., I.C.S. Carvalho, L.P. Sosman, J. Solid State Chem. A 317, 123688 (2023). https://doi.org/10.1016/j.jssc.2022.123688

    Article  CAS  Google Scholar 

  27. https://www.visual-epr.com

  28. R.L. Millard, R.C. Peterson, B.K. Hunter, Am. Mineral. 80, 885 (1995). https://doi.org/10.2138/am-1995-9-1003

    Article  CAS  Google Scholar 

  29. M.V. Nikolić, N. Obradović, K.M. Paraskevopoulos, T.T. Zorba, S.M. Savic´, M.M. Ristic, J. Mater. Sci. 43, 5564 (2008). https://doi.org/10.1007/s10853-008-2819-3

    Article  CAS  Google Scholar 

  30. H.T. Kim, Y. Kim, J. Am. Ceram. Soc. 84, 1081 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00793.x

    Article  CAS  Google Scholar 

  31. C. Ye, S.S. Pan, X.M. Teng, H.T. Fan, G.H. Li, Appl. Phys. A 90, 375 (2008). https://doi.org/10.1007/s00339-007-4289-x

    Article  CAS  Google Scholar 

  32. J. Song, M. Leng, H. Xiao, L. Zhang, Y. Qin, W. Hou, N. Du, J. Liu, J. Nanosci. Nanotechnol. 14, 4649 (2014). https://doi.org/10.1166/jnn.2014.8288

    Article  CAS  Google Scholar 

  33. C. Klingshirn, Phys. Stat. Sol. (B) 244, 3027 (2007). https://doi.org/10.1002/pssb.200743072

    Article  CAS  Google Scholar 

  34. T. Senden, R.J.A. van Dijk-Moes, A. Meijerink, Light: Sci. Appl. 7, 8 (2018). https://doi.org/10.1038/s41377-018-0013-1

    Article  CAS  Google Scholar 

  35. D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063 (1954). https://doi.org/10.1063/1.1740265

    Article  CAS  Google Scholar 

  36. R. Dittmann, D. Hahn, J. Stade, Z. Naturforsch. A 24, 1323 (1969). https://doi.org/10.1515/zna-1969-0908

    Article  CAS  Google Scholar 

  37. I. Markevich, I. Vorona, V. Nosenko, O. Kolomys, V. Strelchuk, T. Stara, L. Borkovska, V. Bondarenko, O. Melnichuk, L. Melnichuk, N. Korsunska, ECS J. Solid State Sci. Technol. 9, 103001 (2020). https://doi.org/10.1149/2162-8777/abba06

    Article  CAS  Google Scholar 

  38. S.A. Al’tshuler, B.M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, London, 1974)

    Google Scholar 

  39. M. Tamatani, in Fundamentals of Phosphors, 1st edn., ed. by W.M. Yen, H. Shionoya (CRC Press, Boca Raton, 2007). https://doi.org/10.1201/9781315219981

    Chapter  Google Scholar 

  40. S. da Silva Pedro, A. López, L. Pantoja Sosman, SN Appl. Sci. 2, 47 (2020). https://doi.org/10.1007/s42452-019-1858-5

    Article  CAS  Google Scholar 

  41. C.A. Johnson, K.R. Kittilstved, T.C. Kaspar, T.C. Droubay, S.A. Chambers, G.M. Salley, D.R. Gamelin, Phys. Rev. B 82, 115202 (2010). https://doi.org/10.1103/PhysRevB.82.115202

    Article  CAS  Google Scholar 

  42. N.O. Korsunska, I.V. Markevich, T.R. Stara, L.V. Borkovska, S. Lavoric, L.Y. Melnichuk, O.V. Melnichuk, Ukr. J. Phys. 63, 660 (2018). https://doi.org/10.15407/ujpe63.7.660

    Article  Google Scholar 

  43. A. Janotti, J.B. Varley, P. Rinke, N. Umezawa, G. Kresse, C.G. Van de Walle, Phys. Rev. B 81, 085212 (2010). https://doi.org/10.1103/PhysRevB.81.085212

    Article  CAS  Google Scholar 

  44. H.-J. Hagemann, D. Hennings, J. Am. Ceram. Soc. 64, 590 (1980). https://doi.org/10.1111/j.1151-2916.1981.tb10223.x

    Article  Google Scholar 

  45. C. Vigreux, B. Deneuve, J. El Fallah, J.M. Haussonne, J. Eur. Ceram. 21, 1681 (2001). https://doi.org/10.1016/S0955-2219(01)00092-9

    Article  CAS  Google Scholar 

  46. I. Vorona, V. Nosenko, S. Okulov, D. Savchenko, T. Petrenko, T. Stara, C. Labbé, L. Borkovska, ECS J. Solid State Sci. Technol. 11, 013005 (2022). https://doi.org/10.1149/2162-8777/ac4a80

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank prof. J.-L. Doualan for the help in study of PL relaxation. The authors also thank all brave defenders of Ukraine who made finalizing this work possible.

Funding

This work was partly supported via bilateral program DNIPRO (project M/34-2020 in Ukraine and #42549TM in France) funded by the Ministry of Education and Research of Ukraine, the French Ministry of Higher Education, Research and Innovation and the Ministry for Europe and Foreign Affairs (MESRI-DAEI/MEAE).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Synthesis of ceramic samples was performed by TS. Data collection and analysis of structural characteristics by X-ray diffraction were performed by OG and TK. Photoluminescence study of ceramic samples was carried out by TS, KK, CL and JC. EPR study of ceramic samples was performed by IV and the modeling of experimental EPR curves was carried out by VN. Diffuse reflectance study of ceramic samples was performed by KK. Analysis of the experimental results was carried out by LB, IV, VN, CL and JC. The first draft of the manuscript was written by LB and TK, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. Kryshtab.

Ethics declarations

Competing interest

The authors Lyudmyla Borkovska, Christophe Labbe and Julien Cardin have conducted their research under the French—Ukrainian Program PHC DNIPRO funded by French Ministry of Higher Education, Research and Innovation and the Ministry for Europe and Foreign Affairs (MESRI-DAEI/MEAE), Ministry of Education and Science of Ukraine.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borkovska, L., Stara, T., Gudymenko, O. et al. Study of Mn ion charge state in Zn2TiO4 and its impact on the photoluminescence and optical absorption spectra. J Mater Sci: Mater Electron 34, 999 (2023). https://doi.org/10.1007/s10854-023-10380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10380-3

Navigation