Skip to main content
Log in

Copper oxide coated polyester fabrics with enhanced catalytic properties towards the reduction of 4-nitrophenol

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel functional polyester fabric (PF) was successfully prepared by a facile method. PF were coated by copper oxide (CuO) followed by chemical grafting of 3-chloropropyltriethoxysilane (ClPTES) and diethanolamine (DEA). The morphology and structure of the resulting material PF@CuO–Si–N(OH)2 was characterized by X-ray diffraction, scanning electron and optical microscopy, thermogravimetry and Fourier-transformed infrared spectroscopy. The results revealed that the CuO particles were densely surrounded PF, and the covalent surface-grafting of ClPTES and DEA within PF was confirmed. It was also demonstrated that CuO/ClPTES/DEA addition generated new functional sites at the PF surface, improving the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The prepared PF@CuO–Si–N(OH)2 exhibited high catalytic activity with appreciable cycling stability for the reduction of 4-NP to 4-AP, even after six successive cycles with nearly 90% conversion. Hence, it may be conclude that the catalytic activity and stability of this catalyst allows envisaging great prospect for large scale reduction of 4-NP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. K.A.G. Gusmão, L.V.A. Gurgel, T.M.S. Melo, L.F. Gil, Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects. J. Environ. Manag. 118, 135–143 (2013)

    Article  Google Scholar 

  2. Y.K. Abdel-Monem, S.M. Emam, H.M. Okda, Solid state thermal decomposition synthesis of CuO nanoparticles from coordinated pyrazolopyridine as novel precursors. J. Mater. Sci.: Mater. Electron. 28(3), 2923–2934 (2017)

    Google Scholar 

  3. Y. Xie, B. Yan, H. Xu, J. Chen, Q. Liu, Y. Deng, H. Zeng, Highly regenerable mussel-inspired Fe3O4@polydopamine-Ag core-shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl. Mater. Interfaces 6, 8845–8852 (2014)

    Article  Google Scholar 

  4. J. Fu, B. Zhu, W. You, M. Jaroniec, J. Yu, A flexible bio-inspired H2-production photocatalyst. Appl. Catal. B 220, 148–160 (2018)

    Article  Google Scholar 

  5. R. Subramanian, V. Ponnusamy, Orientation of β-cyclodextrin onto metal oxides and its paradoxical role in photocatalytic decoloration of 4-nitrophenol. J. Mater. Sci.: Mater. Electron. 28(4), 3440–3450 (2017)

    Google Scholar 

  6. L. Pan, L. Shen, L. Li, Q. Zhu, Synthesis of Au/NiO hollow micro-spheres and their adsorption and electrocatalytic properties for p-nitrophenol. J. Mater. Sci.: Mater. Electron. 27(3), 3065–3070 (2016)

    Google Scholar 

  7. A. Chauhan, G. Pandey, N.K. Sharma, D. Paul, J. Pandey, R.K. Jain, Environ. Sci. Technol. 44, 3435–3441 (2010)

    Article  Google Scholar 

  8. P.C. Rath, D. Saikia, M. Mishra, H.M. Kao, Exceptional catalytic performance of ultrafine Cu2O nanoparticles confined in cubic mesoporous carbon for 4-nitrophenol reduction. Appl. Surf. Sci. 427, 1217–1226 (2018)

    Article  Google Scholar 

  9. S. Lu, J. Yu, Y. Cheng, Q. Wang, A. Barras, W. Xu, R. Boukherroub, Preparation of silver nanoparticles/polydopamine functionalized polyacrylonitrile fiber paper and its catalytic activity for the reduction 4-nitrophenol. Appl. Surf. Sci. 411, 163–169 (2017)

    Article  Google Scholar 

  10. A. Ghosh, M. Khurana, A. Chauhan, M. Takeo, A.K. Chakraborti, R.K. Jain, Environ. Sci. Technol. 44, 1069–1077 (2010)

    Article  Google Scholar 

  11. H. Qiu, F. Qiu, X. Han, J. Li, J. Yang, Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol. Appl. Surf. Sci. 407, 509–517 (2017)

    Article  Google Scholar 

  12. J. Radjenović, M. Petrović, F. Ventura, D. Barceló, Water Res. 42, 3601–3610 (2008)

    Article  Google Scholar 

  13. P. Branton, R.H. Bradley, Adsorption 17, 293–301 (2011)

    Article  Google Scholar 

  14. C. Chu, Z. Su, Langmuir 30, 15345–15350 (2014)

    Article  Google Scholar 

  15. Y.G. Wu, M. Wen, Q.S. Wu, H. Fang, J. Phys. Chem. C 118, 6307–6313 (2014)

    Article  Google Scholar 

  16. P. Dauthal, M. Mukhopadhyay, Ind. Eng. Chem. Res. 51, 13014–13020 (2012)

    Article  Google Scholar 

  17. N. Bingwa, R. Meijboom, J. Phys. Chem. C 118, 19849–19858 (2014)

    Article  Google Scholar 

  18. K. Esumi, R. Isono, T. Yoshimura, Langmuir 20, 237–243 (2004)

    Article  Google Scholar 

  19. W. Ye, J. Yu, Y. Zhou, D. Gao, D. Wang, C. Wang, D. Xue, Appl. Catal. B 181, 371–378 (2017)

    Article  Google Scholar 

  20. W.-D. Oh, Z. Dong, T.-T. Lim, Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Appl. Catal. B 194, 169–201 (2016)

    Article  Google Scholar 

  21. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem. Eng. J. 310, 41–62 (2017)

    Article  Google Scholar 

  22. A. El-Shafei, M. ElShemy, A. Abou-Okeil, Eco-friendly finishing agent for cotton fabrics to improve flame retardant and antibacterial properties. Carbohydr. Polym. 118, 83–90 (2015)

    Article  Google Scholar 

  23. I. Shahid ul, M. Shahid, F. Mohammad, Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind. Eng. Chem. Res. 52(15), 5245–5260 (2013)

    Article  Google Scholar 

  24. N. Abidi, L. Cabrales, E. Hequet, Functionalization of a cotton fabric surface with titania nanosols: applications for self-cleaning and UV-protection properties. ACS Appl. Mater. Interfaces 1, 2141–2146 (2009)

    Article  Google Scholar 

  25. X.F. Meng, N. Luo, S.L. Cao, S.M. Zhang, M.S. Yang, X. Hu, In-situ growth of titania nanoparticles in electrospun polymer nanofibers at low temperature. Mater. Lett. 63, 1401–1403 (2009)

    Article  Google Scholar 

  26. K. Baba, S. Bulou, P. Choquet, N.D. Boscher, Photocatalytic anatase TiO2 thin films on polymer optical fiber using atmospheric-pressure plasma. ACS Appl. Mater. Interfaces 9, 13733–13741 (2017)

    Article  Google Scholar 

  27. M.I. Mejia, J.M. Marin, G. Restrepo, L.A. Rios, C. Pulgarin, J. Kiwi, Preparation, testing and performance of a TiO2/polyester photocatalyst for the degradation of gaseous methanol. Appl. Catal. B-Environ. 94, 166–172 (2010)

    Article  Google Scholar 

  28. J.E. McIntyre, Synthetic Fibers (China Textile Press, Beijing, 2006), pp. 146–147

    Google Scholar 

  29. M. Montazer, S. Seifollahzadeh, Pretreatment of wool/polyester blended fabrics to enhance titanium dioxide nanoparticle adsorption and self-cleaning properties. Color. Technol. 127, 322–327 (2011)

    Article  Google Scholar 

  30. A. Bozzi, T. Yuranova, J. Kiwi, Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J. Photochem. Photobiol. A 172, 27–34 (2005)

    Article  Google Scholar 

  31. K. Qi, J.H. Xin, W.A. Daoud, C.L. Mak, Functionalizing polyester fiber with a selfcleaning property using anatase TiO2 and low-temperature plasma treatment. Int. J. Appl. Ceram. Technol. 4, 554–563 (2007)

    Article  Google Scholar 

  32. T. Pandiyarajan et al. Sonochemical synthesis of CuO nanostructures and their morphology dependent optical and visible light driven photocatalytic properties. J. Mater. Sci.: Mater. Electron. 28, 2448–2457 (2017)

    Google Scholar 

  33. N. Bouazizi et al., Development of a novel functional core-shell-shell nanoparticles: from design to anti-bacterial applications. J. Colloid Interface Sci. 513, 726–735 (2018)

    Article  Google Scholar 

  34. K.R. Reddy, Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol. Struct. 1150, 553–557 (2017)

    Article  Google Scholar 

  35. M.N. Sepehr, H. Kazemian, E. Ghahramani, A. Amrane, V. Sivasankar, M. Zarrabi, Defluoridation of water via light weight expanded clay aggregate (LECA): adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. J. Taiwan Inst. Chem. Eng. 45(4), 1821–1834 (2014)

    Article  Google Scholar 

  36. M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macêdo, M. Nakamura, H.E. Toma, Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279(2–3), 210–217 (2004)

    Article  Google Scholar 

  37. L. Maurizi, A. Claveau, H. Hofmann, Polymer adsorption on iron oxide nanoparticles for one-step amino-functionalized silica encapsulation. J. Nanomater. 16, 1–6 (2015)

    Article  Google Scholar 

  38. M. Comet, L. Schmidlin, B. Siegert, V. Pichot, D. Spitzer, Nanoscale deposition of Kevlar by sublimation. Mater. Lett. 63, 279–281 (2009)

    Article  Google Scholar 

  39. Q.-S. Liu, T. Zheng, P. Wang, L. Guo, Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind. Crops Prod. 31, 233–238 (2010)

    Article  Google Scholar 

  40. Q. Geng, J. Du, Reduction of 4-nitrophenol catalyzed by silver nanoparticles supported on polymer micelles and vesicles. RSC Adv. 4, 16425–16428 (2014)

    Article  Google Scholar 

  41. H. Song et al., Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 128, 3027–3037 (2006)

    Article  Google Scholar 

  42. S. Bae et al., Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol. Appl. Catal. B 182, 541–549 (2016)

    Article  Google Scholar 

  43. Z. Zhang et al., Tailoring electronic properties of graphene by π–π stacking with aromatic molecules. J. Phys. Chem. Lett. 2, 2897–2905 (2011)

    Article  Google Scholar 

  44. Z. Li et al., Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction. Appl. Surf. Sci. 426, 160–168 (2017)

    Article  Google Scholar 

  45. M. Madkour, Y.K. Abdel-Monem, F. Al Sagheer, Controlled synthesis of NiO and Co3O4 nanoparticles from different coordinated precursors: impact of precursor’s geometry on the nanoparticles characteristics. Ind. Eng. Chem. Res. 55(50), 12733–12741 (2016)

    Article  Google Scholar 

  46. W. Che, Y. Ni, Y. Zhang, Y. Ma, Morphology-controllable synthesis of CuO nanostructures and their catalytic activity for the reduction of 4-nitrophenol. J. Phys. Chem. Solids 77, 1–7 (2015)

    Article  Google Scholar 

  47. A. Bumajdad, M. Madkour, Y. Abdel-Moneam, M. El-Kemary, Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J. Mater. Sci. 49(4), 1743–1754 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Bouazizi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 746 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouazizi, N., El achari, A., Campagne, C. et al. Copper oxide coated polyester fabrics with enhanced catalytic properties towards the reduction of 4-nitrophenol. J Mater Sci: Mater Electron 29, 10802–10813 (2018). https://doi.org/10.1007/s10854-018-9145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9145-6

Navigation