Skip to main content
Log in

Pd(0) decorated MnO2 modified cotton fabric: a bio-based catalyst for organic transformations

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The development of novel bio-based heterogeneous catalytic systems with easy separation and recyclability is significant in chemical synthesis. In this work, palladium nanoparticles have been successfully anchored onto the surface of MnO2 modified cotton fabric via a facile method for synthesizing Pd(0)@MnO2–CF catalyst. Several characterization methods, including field emission gun scanning electron microscopy (FEG-SEM), energy-dispersive X-ray electron microscopy (EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and X-ray photoelectron microscopy (XPS), were used to confirm the immobilization of palladium nanoparticles on to the cotton fabric. The catalytic activity of the synthesized catalyst, Pd(0)@MnO2–CF, was evaluated for oxidation of alcohols, oxidative deprotection of oximes and degradation of methyl orange, for which the catalyst demonstrated good activity and selectivity. The developed catalyst is easy to handle and can be separated from the reaction mixture using laboratory tweezers. It eliminates the need to employ other tedious work-up procedures. Further, the reusability of Pd(0)@MnO2–CF was studied by performing oxidation of 4-bromobenzyl alcohol and oxidative deprotection of 4-bromobenzaldehyde oxime consecutively five times, and a minor loss in catalytic activity was observed suggesting high stability of the developed catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Xia, J. Wu, S.A. Delbari, A.S. Namini, Y. Yuan, Q.V. Le, D. Kim, R.S. Varma, T. Ali, H.W. Jang, M. Shokouhimehr, Metal-organic framework-based nanostructured catalysts: applications in efficient organic transformations. Mol. Catal. 546, 113217 (2023)

    Article  CAS  Google Scholar 

  2. M.J. Ndolomingo, N. Bingwa, R. Meijboom, Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. J. Mater. Sci. 55, 6195–6241 (2020)

    Article  CAS  Google Scholar 

  3. B.K. Singh, S. Lee, K. Na, An overview on metal-related catalysts: metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Met. 39, 751–766 (2020)

    Article  CAS  Google Scholar 

  4. J.M. Campelo, D. Luna, R. Luque, J.M. Marinas, A.A. Romero, Sustainable preparation of supported metal nanoparticles and their applications in catalysis. Chemsuschem 2, 18–45 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. A. Naghipour, A. Fakhri, Heterogeneous Fe3O4@chitosan-Schiff base Pd nanocatalyst: fabrication, characterization and application as highly efficient and magnetically-recoverable catalyst for Suzuki-Miyaura and Heck-Mizoroki C–C coupling reactions. Catal. Commun. 73, 39–45 (2016)

    Article  CAS  Google Scholar 

  6. S. Sabaqian, F. Nemati, H.T. Nahzomi, M.M. Heravi, Palladium acetate supported on amidoxime-functionalized magnetic cellulose: synthesis, DFT study and application in Suzuki reaction. Carbohydr. Polym. 177, 165–177 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. M. Nasrollahzadeh, N. Shafiei, Z. Nezafat, N.S.S. Bidgoli, F. Soleimani, Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano) catalysts in sustainable and selective oxidation reactions: a review. Carbohydr. Polym. 241, 116353 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. S. Khanapure, M. Jagadale, D. Kale, S. Gajare, G. Rashinkar, Cellulose-supported ionic liquid phase catalyst-mediated mannich reaction. Aust. J. Chem. 72, 513–523 (2019)

    Article  CAS  Google Scholar 

  9. P. Dhar, A. Kumar, V. Katiyar, Fabrication of cellulose nanocrystal supported stable Fe (0) nanoparticles: a sustainable catalyst for dye reduction, organic conversion and chemo-magnetic propulsion. Cellulose 22, 3755–3771 (2015)

    Article  CAS  Google Scholar 

  10. T. Kamal, I. Ahmad, S.B. Khan, A.M. Asiri, Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles. Int. J. Biol. Macromol. 135, 1162–1170 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. J.H. Johnston, T. Nilsson, Nanogold and nanosilver composites with lignin-containing cellulose fibres. J. Mater. Sci. 47, 1103–1112 (2012)

    Article  CAS  Google Scholar 

  12. C. Wan, Y. Jiao, Q. Sun, J. Li, Preparation, characterization, and antibacterial properties of silver nanoparticles embedded into cellulose aerogels. Polym. Compos. 37, 1137–1142 (2016)

    Article  CAS  Google Scholar 

  13. F. Ali, S.B. Khan, T. Kamal, K.A. Alamry, A.M. Asiri, T.R. Sobahi, Chitosan coated cotton cloth supported zero-valent nanoparticles: simple but economically viable, efficient and easily retrievable catalysts. Sci. Rep. 7, 16957 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  14. M. Bhardwaj, S. Paul, Palladium nanoparticles onto ethylenediamine functionalized silica–cellulose substrates [Pd (0)-EDA/SCs]: an efficient and sustainable approach for hydrogenation of nitroarenes and carbonyl compounds under mild conditions. Arab. J. Chem. 12, 4231–4239 (2019)

    Article  CAS  Google Scholar 

  15. Z. Hu, Y. Zhao, J. Liu, J. Wang, B. Zhang, X. Xiang, Ultrafine MnO2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol. J. Colloid Interface Sci. 483, 26–33 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. Q. Yang, F. Yao, Y. Zhong, F. Chen, X. Shu, J. Sun, L. He, B. Wu, K. Hou, D. Wang, X. Li, Metal-organic framework supported palladium nanoparticles: applications and mechanisms. Part. Part. Syst. Charact. 36, 1800557 (2019)

    Article  Google Scholar 

  17. T. Li, T. Tian, F. Chen, X. Liu, X. Zhao, Pd nanoparticles incorporated within a Zr-based metal-organic framework/reduced graphene oxide multifunctional composite for efficient visible-light-promoted benzyl alcohol oxidation. Aust. J. Chem. 72, 334–340 (2019)

    Article  CAS  Google Scholar 

  18. S. Ma, J. Liu, S. Li, B. Chen, J. Cheng, J. Kuang, Y. Liu, B. Wan, Y. Wang, J. Ye, Q. Yu, W. Yuan, S. Yu, Development of a general and practical iron nitrate/TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes/ketones: catalysis with table salt. Adv. Synth. Catal. 353, 1005–1017 (2011)

    Article  CAS  Google Scholar 

  19. M. Hirano, K. Kojima, S. Yakabe, T. Morimoto, Oxidative deprotection of oximes with peroxodisulfate under heterogeneous conditions. J. Chem. Res. 7, 277–279 (2001)

    Article  Google Scholar 

  20. B. Jaleh, M. Nasrollahzadeh, B.F. Mohazzab, M. Eslamipanah, M. Sajjadi, H. Ghafuri, State-of-the-art technology: recent investigations on laser-mediated synthesis of nanocomposites for environmental remediation. Ceram. Int. 47, 10389–10425 (2021)

    Article  CAS  Google Scholar 

  21. S.M. Anis, S.H. Hashemi, A. Nasri, M. Sajjadi, M. Eslamipanah, B. Jaleh, Decorated ZrO2 by Au nanoparticles as a potential nanocatalyst for the reduction of organic dyes in water. Inorg. Chem. Commun. 141, 109489 (2022)

    Article  Google Scholar 

  22. N. Ali, T. Kamal, M. Ul-Islam, A. Khan, S.J. Shah, A. Zada, Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int. J. Biol. Macromol. 111, 832–838 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. A. Shaabani, M.B. Boroujeni, M.S. Laeini, Porous chitosan–MnO2 nanohybrid: a green and biodegradable heterogeneous catalyst for aerobic oxidation of alkylarenes and alcohols. Appl. Organometal. Chem. 30, 154–159 (2016)

    Article  CAS  Google Scholar 

  24. A.L. Cappelletti, P.M. Uberman, S.E. Martín, M.E. Saleta, H.E. Troiani, R.D. Sánchez, R.E. Carbonio, M.C. Strumia, Synthesis, characterization, and nanocatalysis application of core–shell superparamagnetic nanoparticles of Fe3O4@Pd. Aust. J. Chem. 68, 1492–1501 (2015)

    Article  CAS  Google Scholar 

  25. D. Baruah, R.N. Das, S. Hazarika, D. Konwar, Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb-A green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal. Commun. 72, 73–80 (2015)

    Article  CAS  Google Scholar 

  26. L. Zhou, J. He, J. Zhang, Z. He, Y. Hu, C. Zhang, H. He, Facile in-situ synthesis of manganese dioxide nanosheets on cellulose fibers and their application in oxidative decomposition of formaldehyde. J. Phys. Chem. C 115, 16873–16878 (2011)

    Article  CAS  Google Scholar 

  27. J. Wang, W.S. Cheon, J.-Y. Lee, W. Yan, S. Jung, H.W. Jang, M. Shokouhimehr, Magnetic boron nitride adorned with Pd nanoparticles: an efficient catalyst for the reduction of nitroarenes in aqueous media. Dalton Trans. 52, 3567–3574 (2023)

    Article  CAS  PubMed  Google Scholar 

  28. J. Zhang, D. Bian, G. Shao, H. Wang, C. Wang, Facile synthesis of sandwich-like MnO2@Pd@MnO2 hollow spheres with superior catalytic stability and activity. J. Alloy. Compd. 870, 159415 (2021)

    Article  CAS  Google Scholar 

  29. A. Choudhary, V. Sharma, S. Sharma, N. Sharma, Pd nanoparticles supported on magnetic CoTiMgLDH with enhanced catalytic activity in Suzuki cross-coupling and reductive degradation of dyes. Appl. Organomet. Chem. 37, e7112 (2023)

    Article  CAS  Google Scholar 

  30. P. Chandrasekaran, V. Arul, M.G. Sethuraman, Ecofriendly synthesis of fluorescent nitrogen-doped carbon dots from coccinia grandis and its efficient catalytic application in the reduction of methyl orange. J. Fluoresc. 30, 103–112 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. H. Yang, X. Han, Z. Ma, R. Wang, J. Liu, X. Ji, Palladium-guanidine complex immobilized on SBA-16: a highly active and recyclable catalyst for Suzuki coupling and alcohol oxidation. Green Chem. 12, 441–451 (2010)

    Article  CAS  Google Scholar 

  32. R. Choudhary, D.K. Dumbre, S.K. Bhargava, Oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over nanogold supported on TiO2 and other transition and rare-earth metal oxides. Ind. Eng. Chem. Res. 48, 9471–9478 (2009)

    Article  CAS  Google Scholar 

  33. M. Khodamorady, K. Bahrami, Fe3O4@BNPs-CPTMS-Chitosan-Pd(0) as an efficient and stable heterogeneous magnetic nanocatalyst for the chemoselective oxidation of alcohols and homoselective synthesis of 5-subestituted 1H-tetrazoles. ChemistrySelect 4, 8183–8194 (2019)

    Article  CAS  Google Scholar 

  34. X. Jing, D. Yuan, L. Yu, Green and practical oxidative deoximation of oximes to ketones or aldehydes with hydrogen peroxide/air by organoselenium catalysis. Adv. Synth. Catal. 359, 1194–1201 (2017)

    Article  CAS  Google Scholar 

  35. A. Aminimanesh, R. Golbedaghi, L. Hadi, A selective method for catalytic cleavage of oximes to their carbonyl compounds using 10% H2O2 and [Mn (L22pyfp) Cl](ClO4) as a catalyst. Org. Prep. Proced. Int. 51, 90–95 (2019)

    Article  CAS  Google Scholar 

  36. G. Zhang, X. Wen, Y. Wang, X. Han, Y. Luan, L. Zheng, X. Cao, In situ generation of active species “NO” for the aerobic oxidative deprotection of aldoximes catalyzed by FeCl3/TEMPO. RSC Adv. 3, 22918–22921 (2013)

    Article  CAS  Google Scholar 

  37. X. Chen, D.H. Kuo, J. Zhang, Q. Lu, J. Lin, Nanosheet bimetal oxysulfide CuSbOS catalyst for highly efficient catalytic reduction of heavy metal ions and organic dyes. J. Mol. Liq. 275, 204–214 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Director, SAIF, Panjab University for XRD, FEG-SEM and EDX; Head, ACMS, IIT Kanpur, for XPS study; Head, SAIF, IIT Bombay, for ICP-AES and Department of Chemistry, University of Jammu for FTIR and TGA. Financial assistance from the Department of Science and Technology under PURSE programme; UGC, New Delhi, under SAP and to authors A.C. and S. S. (RUSA 2.0) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Paul.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4240 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Sharma, V., Choudhary, A. et al. Pd(0) decorated MnO2 modified cotton fabric: a bio-based catalyst for organic transformations. J IRAN CHEM SOC 21, 1389–1401 (2024). https://doi.org/10.1007/s13738-024-03005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-03005-x

Keywords

Navigation