Skip to main content
Log in

Structural, optical and excellent humidity sensing behaviour of ZnSnO3 nanoparticles: effect of annealing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The chemi-resistive humidity sensing behaviour of as prepared and annealed fcc-ZnSnO3 nanoparticles synthesized using wet chemical synthesis method is reported here. The effect of annealing on the evolution of varied nano-morphology of ZnSnO3 is in accordance to Ostwald’s ripening law. The optical energy bandgap energy change from 4.64 to 3.84 eV for annealed samples confirms the role of annealing over improved sensing performance. At room temperature, an excellent humidity sensitivity of 4155% and response/recovery time of 19/22 s. is observed for 500 °C annealed ZnSnO3 sample within 08–97% relative humidity range. The experimental data observed over the entire range of RH values well fitted with the Freundlich adsorption isotherm model, and revealing two distinct water adsorption regimes. This indicates that with an increase in annealing temperature the samples show improved adsorption capacity and strength. The excellent humidity sensitivity observed in the annealed nanostructures is attributed to Grotthuss mechanism considering the availability and distribution of available adsorption sites. This present result proposes utilization of low cost synthesis technique of ZnSnO3 holds the promising capabilities as a potential candidate for the fabrication of next generation humidity sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.I. Choi, S.J. Hwang, Z. Dai, Y.C. Kang, J.H. Lee, RSC Adv. 4, 53130–53136 (2014)

    Article  Google Scholar 

  2. S.Y. Park, J.E. Lee, Y.H. Kim, J.J. Kim, Y.S. Shim, S.Y. Kim, M.H. Lee, H.W. Jang, Sens. Actuators B 258, 775–782 (2018)

    Article  Google Scholar 

  3. X. Liu, R. Wang, T. Zhang, Y. He, J. Tu, X. Li, Sens. Actuators B 150, 442–448 (2010)

    Article  Google Scholar 

  4. J. Zhao, Y. Liu, X. Li, G. Lu, L. You, X. Liang, F. Liu, T. Zhang, Y. Du, Sens. Actuators B 181, 802–809 (2013)

    Article  Google Scholar 

  5. T. Nitta, T. Seiyama, Chem. Sens. Technol. 1, 57–78 (1988)

    Article  Google Scholar 

  6. S.P. Chang, S.J. Chang, C.Y. Lu, M.J. Li, C.L. Hsu, Y.Z. Chiou, T.J. Hsueh, I. Chen, Superlattices Microstruct. 47, 772–778 (2010)

    Article  Google Scholar 

  7. P.M. Shirage, A.K. Rana, Y. Kumar, S. Sen, S.G. Leonardi, G. Neri, RSC Adv. 6, 82733–82742 (2016)

    Article  Google Scholar 

  8. Y. Kumar, A. Sharma, P.M. Shirage, RSC Adv. 7, 55778–55785 (2017)

    Article  Google Scholar 

  9. A. Kolmakov, D. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5, 667–673 (2005)

    Article  Google Scholar 

  10. Q. Kuang, C. Lao, Z.L. Wang, Z. Xie, L. Zheng, J. Am. Chem. Soc. 129, 6070–6071 (2007)

    Article  Google Scholar 

  11. R.J. Wu, Y.L. Sun, C.C. Lin, H.W. Chen, M. Chavali, Sens. Actuators B 115, 198–204 (2006)

    Article  Google Scholar 

  12. A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poliand, G. Sberveglieri, Thin Solid Films 515, 8356–8359 (2007)

    Article  Google Scholar 

  13. C.S. Rout, K. Ganesh, A. Govindaraj, C.N.R. Rao, Appl. Phys. A 85, 241–246 (2006)

    Article  Google Scholar 

  14. Z.L. Wang, J. Phys. 16, R829-R858 (2004)

    Google Scholar 

  15. A. Sutka, K.A. Gross, Sens. Actuators B 222, 95–105 (2016)

    Article  Google Scholar 

  16. C.H. Fang, B.Y. Geng, J. Liu, F.M. Zhan, Chem. Commun. 17, 2350–2352 (2009)

    Article  Google Scholar 

  17. Q. Xie, Y. Ma, X. Zhang, H. Guo, A. Lu, L. Wang, G. Yue, D.L. Peng, Electrochim. Acta 141, 374–383 (2014)

    Article  Google Scholar 

  18. J. Xu, X. Jia, X. Lou, J. Shen, Solid-State Electron. 50, 504–507 (2006)

    Article  Google Scholar 

  19. G. Ma, R. Zou, L. Jiang, Z. Zhang, Y. Xue, L. Yu, G. Song, W. Li, J. Hu, CrystEngComm 14, 2172–2179 (2012)

    Article  Google Scholar 

  20. Y.Y. Choi, K.H. Choi, H. Lee, H. Lee, J.W. Kang, H.K. Kim, Sol. Energy Mater. Sol. Cells 95, 1615–1623 (2011)

    Article  Google Scholar 

  21. S. Aziz, K.G. Bum, Y.J. Yang, B.S. Yang, C.U. Kang, Y.H. Doh, K.H. Choi, H.C. Kim, Sens. Actuators A 246, 1–8 (2016)

    Article  Google Scholar 

  22. J. Li, T. Fu, Y. Chen, B. Guan, M. Zhuo, T. Yang, Z. Xu, Q. Li, M. Zhang, CrystEngComm 16, 2977–2983 (2014)

    Article  Google Scholar 

  23. X.Y. Xue, Y.J. Chen, Q.H. LI, C. Wang, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 88, 182102 (2006)

    Article  Google Scholar 

  24. G. Wrobel, M. Piech, S. Dardona, Y. Ding, P.X. Gao, Cryst.Growth Des. 9, 4456–4460 (2009)

    Article  Google Scholar 

  25. H.T. Fan, Y. Zeng, X.J. Xu, N. Lv, T. Zhang, Sens. Actuators B 153, 170–175 (2011)

    Article  Google Scholar 

  26. Y. Zeng, T. Zhang, H.T. Fan, W.Y. Fu, G.Y. Lu, Y.M. Sui, H.B. Yang, J. Phys. Chem. C 113, 19000–19004 (2009)

    Article  Google Scholar 

  27. L. Greenspan, J. Res. Nat. Bur. Stand. 81A, 89–96 (1977)

    Article  Google Scholar 

  28. D.R. Lide, CRC Handbook of Chemistry and Physics, 90th edn. (CRC Press, Boca Raton, FL, 2009)

    Google Scholar 

  29. D. Zhang, H. Chang, R. Liu, J. Electron. Mater. 45, 4275–4281 (2016)

    Article  Google Scholar 

  30. Y. Wang, P. Gao, D. Bao, L. Wang, Y. Chen, X. Zhou, P. Yang, S. Sun, M. Zhang, Inorg.Chem. 53, 12289–12296 (2014)

    Article  Google Scholar 

  31. Y. Kumar, A.K. Rana, P. Bhojane, M. Pusty, V. Bagwe, S. Sen, P.M. Shirage, Mater. Res. Express 2, 105017 (2015)

    Article  Google Scholar 

  32. Y. Kumar, P.M. Shirage, J. Mater. Sci. 52, 4840–4851 (2017)

    Article  Google Scholar 

  33. X. Wang, Y. Li, Inorg. Chem. 45, 7522–7534 (2006)

    Article  Google Scholar 

  34. C. Li, Z. Hou, C. Zhang, P. Yang, G. Li, Z. Xu, Y. Fan, J. Lin, Chem. Mater. 21, 4598–4607 (2009)

    Article  Google Scholar 

  35. G. Jia, Y. Zheng, K. Liu, Y. Song, H. You, H. Zhang, J. Phys. Chem. C 113, 153–158 (2009)

    Article  Google Scholar 

  36. J. Huang, X. Xu, C. Gu, W. Wang, B. Geng, Y. Sun, J. Liu, Sens. Actuators B 171–172, 572–579 (2012)

    Article  Google Scholar 

  37. T. Bora, M.H. Al-Hinai, A.T. Al-Hinai, J. Dutta, J.Am. Ceram. Soc. 98, 4044–4049 (2015)

    Article  Google Scholar 

  38. A.S. Hassanien, A.A. Akl, J. Alloys Compd. 648, 280–290 (2015)

    Article  Google Scholar 

  39. I. Saafi, R. Dridi, R. Mimouni, A. Amlouk, A. Yumak, K. Boubaker, P. Petkova, M. Amlouk, Ceram. Int. 42, 6273–6281 (2016)

    Article  Google Scholar 

  40. Z. Wang, J. Liu, F. Wang, S. Chen, H. Luo, X. Yu, J. Phys. Chem. C 114, 13577–13582 (2010)

    Article  Google Scholar 

  41. A. Placke, A. Kumar, S. Priya, PLoS ONE 11, e0156246 (2016)

    Article  Google Scholar 

  42. Z. Chen, C. Lu, Sens. Lett. 3, 274–295 (2005)

    Article  Google Scholar 

  43. A.S. Pawbake, R. Waykar, D.J. Late, S.R. Jadkar, ACS Appl. Mater. Interfaces 5, 3359–3365 (2016)

    Article  Google Scholar 

  44. V. Jadkar, A.S. Pawbake, R. Waykar, A. Jadhavar, A. Date, D. Late, H. Pathan, S. Gosavi, S. Jadkar, Phys. Status Solidi A 214, 1600717 (2017)

    Article  Google Scholar 

  45. J. Herran, I. Fernandez, E. Ochoteco, G. Cabanero, H. Grande, Sens. Actuators B 198, 239–242 (2014)

    Article  Google Scholar 

  46. V.K. Tomer, N. Thangaraj, S. Gahlot, K. Kailasam, Nanoscale 8, 19794–19803 (2016)

    Article  Google Scholar 

  47. A. Sharma, P. Bhojane, A.K. Rana, Y. Kumar, P.M. Shirage, Scr. Mater. 128, 65–68 (2017)

    Article  Google Scholar 

  48. C.H. Xu, S.Q. Shi, C. Surya, Sensors 9, 9903–9924 (2008)

    Google Scholar 

  49. C.D. Hatch, J.S. Wiese, C.C. Crane, K.J. Harris, H.G. Kloss, J. Baltrusaitis, Langmuir 28, 1790–1803 (2012)

    Article  Google Scholar 

  50. B.M. Kulwicki, J. Am. Ceram. Soc. 74, 697–708 (1991)

    Article  Google Scholar 

  51. S.R. Morrison, Sens. Actuators 2, 329–341 (1982)

    Article  Google Scholar 

  52. R. Schaub, P. Thostrup, N. Lopez, E. Lagsgaard, I. Stensgaard, J.K. Norskov, F. Besenbacher, Phys. Rev. Lett. 87, 266104 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (SERB-DST), India by awarding a prestigious ‘Ramanujan Fellowship’ (SR/S2/RJN-121/2012) to the PMS. Authors also acknowledge the CSIR research Grant No. 03(1349)/16/EMR-II. Authors are thankful to Prof. Pradeep Mathur, Director, IIT Indore, for encouraging the research and providing the necessary facilities. Authors extend their gratitude to SIC-IIT Indore for providing characterization facilities. AS and YK is thankful to MHRD, Government of India for the doctoral research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parasharam M. Shirage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 281 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Kumar, Y. & Shirage, P.M. Structural, optical and excellent humidity sensing behaviour of ZnSnO3 nanoparticles: effect of annealing. J Mater Sci: Mater Electron 29, 10769–10783 (2018). https://doi.org/10.1007/s10854-018-9143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9143-8

Navigation