Skip to main content
Log in

Humidity-Sensing Properties of One-Step Hydrothermally Synthesized Tin Dioxide-Decorated Graphene Nanocomposite on Polyimide Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This paper demonstrates the one-step hydrothermal synthesis of a tin dioxide (SnO2)-decorated reduced graphene oxide (RGO) hybrid nanocomposite, which was drop-casted on a polyimide substrate as a humidity sensor. The as-synthesized hybrid was characterized in terms of its nanostructural, morphological and compositional features by SEM, XRD and nitrogen sorption. The humidity sensing properties of the presented RGO/SnO2 hybrid nanocomposite, such as repeatability, stability, response-recovery characteristics, were investigated by exposing it to a broad humidity range of 11–97% RH at room temperature. As a result, the sensor demonstrated a high sensitivity, a good repeatability, an acceptable linearity, a fast response/recovery characteristic and high long-term stability over a full humidity range measurement, indicating the unique advantages of one-step hydrothermal synthesis for sensor fabrication. The possible and proposed sensing mechanism for the sensor is mainly attributed to a humidity-induced transfer of charge carriers occuring at the interfaces and the swelling effect of RGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Yang, Y.Z. Yu, L.S. Zhu, X. Wu, X.H. Wang, and J. Zhang, Sens. Actuators B 208, 327 (2015).

    Article  Google Scholar 

  2. P.-G. Su and C.-F. Chiou, Sens. Actuators B 200, 9 (2014).

    Article  Google Scholar 

  3. T. Fei, K. Jiang, S. Liu, and T. Zhang, RSC Adv. 4, 21429 (2014).

    Article  Google Scholar 

  4. T. Nenov and Z. Nenova, Ceram. Int. 39, 4465 (2013).

    Article  Google Scholar 

  5. Y. Zhu, J.C. Chen, H.M. Li, Y.H. Zhu, and J.Q. Xu, Sens. Actuators B 193, 320 (2014).

    Article  Google Scholar 

  6. Y. Li, T.T Wu, and M.J. Yang, Sens. Actuators B 203, 63 (2014).

  7. D. Zhang, J. Tong, B. Xia, and Q. Xue, Sens. Actuators B 203, 263 (2014).

    Article  Google Scholar 

  8. M. Parthibavarman, V, Hariharan, and C. Sekar, Mater. Sci. Eng. 31, 840 (2011).

  9. J. Huang, J. Wang, A.A. Zhukova, M.N. Rumyantseva, A.M. Gaskov, K. Yu, C. Gu, and J. Liu, Sens. Lett. 7, 1025 (2009).

    Article  Google Scholar 

  10. B.C. Yadav, R. Singh, and S. Singh, J. Exp. Nanosci. 8, 670 (2013).

    Article  Google Scholar 

  11. H. Farahani, R. Wagiran, and M.N. Hamidon, Sensors 14, 7881 (2014).

    Article  Google Scholar 

  12. K.S. Novoselov, V.I. Fal′ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192 (2012).

    Article  Google Scholar 

  13. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  Google Scholar 

  14. W.J. Yuan and G.Q. Shi, J. Mater. Chem. A 1, 10078 (2013).

    Article  Google Scholar 

  15. E. Llobet, Sen. Actuators B 179, 32 (2013).

    Article  Google Scholar 

  16. G. Lu, S. Park, K. Yu, R.S. Ruoff, L.E. Ocola, D. Rosenmann, and J. Chen, ACS Nano 5, 1154 (2011).

    Article  Google Scholar 

  17. H. Zhang, J.C. Feng, T. Fei, S. Liu, and T. Zhang, Sens. Actuators B 190, 472 (2014).

    Article  Google Scholar 

  18. Z.Y. Wang, Y. Xiao, X.B. Cui, P.F. Cheng, B. Wang, Y. Gao, X.W. Li, T.L. Yang, T. Zhang, G.Y. Lu, and A.C.S. Appl, Mater. Interfaces 6, 3888 (2014).

    Article  Google Scholar 

  19. C. Wang, J. Zhu, S. Liang, H. Bi, Q. Han, X. Liu, and X. Wang, J. Mater. Chem. A 2, 18635 (2014).

    Article  Google Scholar 

  20. D. Zhang, N. Yin, and B. Xia, J. Mater. Sci.: Mater. Electron. 26, 5937 (2015).

    Google Scholar 

  21. W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  22. S. Liu, J.Q. Tian, L. Wang, and X.P. Sun, Carbon 49, 3158 (2011).

    Article  Google Scholar 

  23. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Boston: Addison-Wesley, 1978), pp. 411–415.

    Google Scholar 

  24. D. Zhang, J. Tong, and B. Xia, Sens. Actuators B 197, 66 (2014).

    Article  Google Scholar 

  25. C.L. Zhao, M. Qin, W.H. Li, and Q.A. Huang, in 16th International Solid-State Sensors, Actuators and Microsystems Conference Proceedings (2011), pp. 1954–1957.

  26. Y. Yao, X.D. Chen, H.H. Guo, and Z.Q. Wu, Appl. Surf. Sci. 257, 7778 (2011).

    Article  Google Scholar 

  27. Y. Yao, X.D. Chen, H.H. Guo, Z.Q. Wu, and X.Y. Li, Sens. Actuators B 161, 1053 (2012).

    Article  Google Scholar 

  28. S.M. Balashov, O.V. Balachova, A.P. Filho, M.C.Q. Bazetto, and M.G. de Almeida, ECS Trans. 49, 445 (2012).

    Article  Google Scholar 

  29. Q.W. Huang, D.W. Zeng, S.Q. Tian, and C.S. Xie, Mater. Lett. 83, 76 (2010).

    Article  Google Scholar 

  30. K.M. Jensen, M. Christensen, P. Juhas, C. Tyrsted, E.D. Bøjesen, N. Lock, S.J.L. Billinge, and B.B. Iversen, J. Am. Chem. Soc. 134, 6785 (2012).

    Article  Google Scholar 

  31. F.H. Li, J.F. Song, H.F. Yang, S.F. Gan, Q.X. Zhang, D.X. Han, A. Ivaska, and L. Niu, Nanotechnology 20, 455602 (2009).

    Article  Google Scholar 

  32. P.A. Russo, N. Donato, S.G. Leonardi, S. Baek, D.E. Conte, G. Neri, and N. Pinna, Angew. Chem. Int. Ed. 51, 11053 (2012).

    Article  Google Scholar 

  33. Q.Q. Lin, Y. Li, and M.J. Yang, Sens. Actuators B 173, 139 (2012).

    Article  Google Scholar 

  34. N. Agmon, Chem. Phys. Lett. 244, 456 (1995).

    Article  Google Scholar 

  35. S. Mao, G. Lu, and J. Chen, J. Mater. Chem. A 2, 5573 (2014).

    Article  Google Scholar 

  36. G.H. Lu, L.E. Ocola, and J.H. Chen, Nanotechnology 20, 445502 (2009).

    Article  Google Scholar 

  37. G.H. Lu, L.E. Ocola, and J.H. Chen, Appl. Phys. Lett. 94, 083111 (2009).

    Article  Google Scholar 

  38. F. Barroso-Bujans, S. Cerveny, A. Alegra, and J. Colmenero, Carbon 48, 3277 (2010).

    Article  Google Scholar 

  39. T. Fei, K. Jiang, F. Jiang, R. Mu, and T. Zhang, J. Appl. Polym. Sci. 131, 39726 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongzhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Chang, H. & Liu, R. Humidity-Sensing Properties of One-Step Hydrothermally Synthesized Tin Dioxide-Decorated Graphene Nanocomposite on Polyimide Substrate. J. Electron. Mater. 45, 4275–4281 (2016). https://doi.org/10.1007/s11664-016-4630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4630-2

Keywords

Navigation