Skip to main content
Log in

Influence of chemical substitution and pressure on structure, resistivity and magnetism of La1+xBa2−xFe3O8+δ (x = 0, 0.5, 1; 0 < δ < 1)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Among those Fe-based perovskite \(R \hbox {Ba}_{2} \hbox {Fe}_{3} \hbox {O}_{8+\delta }\) which are isomorphous to high-\(T_{c} \, R \hbox {Ba}_{2} \hbox {Cu}_{3} \hbox {O}_{7-\delta }\) superconductors (\(R=\hbox {rare earth}\) and Y), the cubic \(\hbox {LaBa}_{2} \hbox {Fe}_{3} \hbox {O}_{8+\delta }\) is special in that both its magnetism and resistivity are strongly modified when varying a control parameter such as oxygen concentration (\(8+\delta\)), La/Ba ratio (\(1 + x/2 - x\)), or applied pressure (p). With the aim of identifying and optimizing those conditions that induce a reduction in its magnetism and resistivity, we synthesized various samples of \(\hbox {La}_{1+x} \hbox {Ba}_{2-x} \hbox {Fe}_{3} \hbox {O}_{8+\delta }\) and studied their structure, magnetism, and resistivity as a function of \(\delta\), p, and x. In this preliminary report, we show that (i) the cubic, \(Pm{\bar{3}}m\), structure is stable across the studied ranges, however the lattice a-parameter is reduced on increasing x, \(\delta\), or p; (ii) the resistivity is reduced on increasing \(\delta\) or reducing x; the influence of pressure, on the other hand, is mostly manifested around and below the onset points of charge and magnetic order. (iii) The magnetism is much reduced as compared to that of the heavier \(R \hbox {Ba}_{2} \hbox {Fe}_{3} \hbox {O}_{8+\delta }\) members. We discuss the influence of each of x, \(\delta\) and p in terms of the Fe ions disproportionation scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Ishida, Y. Nakai, H. Hosono, J. Phys. Soc. Jpn. 78, 062001 (2009)

    Article  Google Scholar 

  2. Y. Mizuguchi, Y. Takano, J. Phys. Soc. Jpn. 79, 102001 (2010)

    Article  Google Scholar 

  3. M. ElMassalami, A. Elzubair, H. Ibrahim, M.A. Rizgalla, Physica C 183, 143 (1991)

    Article  Google Scholar 

  4. V. Awana, L. Menon, S. Malik, A. Mehta, S. Mishra, W. Yelon, Physica B 223–224, 558 (1996)

    Article  Google Scholar 

  5. I. Felner, I. Nowik, U. Yaron, O. Cohen, E.R. Bauminger, T. Kroener, G. Czjzek, Phys. Rev. B 48, 16040. (1993)

    Article  Google Scholar 

  6. Q. Huang, P. Karen, V.L. Karen, A. Kjekshus, J.W. Lynn, A.D. Mighell, N. Rosov, A. Santoro, Phys. Rev. B 45, 9611 (1992)

    Article  Google Scholar 

  7. A. Elzubair, M. ElMassalami, P. Domingues, Physica B 271, 284 (1999)

    Article  Google Scholar 

  8. E. Garcia-Gonzalez, M. Parras, J.M. Gonzalez-Calbet, M. Vallet-Regi, J. Solid State Chem. 105, 363 (1993)

    Article  Google Scholar 

  9. J.M. Gonzalez-Calbet, M. Parras, M. Vallet-Regi, Solid State Chem. 104, 232 (1993)

    Article  Google Scholar 

  10. P. Karen, A. Kjekshus, Q. Huang, J. Lynn, N. Rosov, I.N. Sora, V. Karen, A. Mighell, A. Santoro, J. Solid State Chem. 136, 21 (1998)

    Article  Google Scholar 

  11. P. Karen, A. Kjekshus, Q. Huang, V. Karen, J. Lynn, N. Rosov, I.N. Sora, A. Santoro, J. Solid State Chem. 174, 87 (2003)

    Article  Google Scholar 

  12. P. Karen, J. Solid State Chem. 177, 281 (2004)

    Article  Google Scholar 

  13. J. Linden, P. Karen, A. Kjekshus, J. Miettinen, M. Karppinen, J. Solid State Chem. 144, 398 (1999)

    Article  Google Scholar 

  14. J. Linden, A. Kjekshus, P. Karen, J. Miettinen, M. Karppinen, J. Solid State Chem. 139, 168 (1998)

    Article  Google Scholar 

  15. J. Linden, M. Lippmaa, P. Karen, A. Kjekshus, M. Karppinen, J. Solid State Chem. 138, 87 (1998)

    Article  Google Scholar 

  16. L.V. Kharton, A.V. Kovalevsky, M.V. Patrakeev, E.V. Tsipis, A.P. Viskup, V.A. Kolotygin, A.A. Yaremchenko, A.L. Shaula, E.A. Kiselev, J.C. Waerenborgh, Chem. Mater. 20, 6457 (2008)

    Article  Google Scholar 

  17. Y. Xu, X. Hao, M. Lu, Z. Wu, D. Zhou, J. Meng, Solid State Commun. 147, 130 (2008)

    Article  Google Scholar 

  18. Y. Zhang, X.Y. Guan, C.H. Cheng, M. Pan, H. Zhang, Y. Zhao, Physica C 493, 114 (2013)

    Article  Google Scholar 

  19. P. Karen, A. Kjekshus, J. Solid State Chem. 112, 73 (1994)

    Article  Google Scholar 

  20. P. Karen, E. Suard, F. Fauth, Inorg. Chem. 44, 8170 (2005)

    Article  Google Scholar 

  21. J. Li, J. Jing, J. Mater. Sci. 27, 4361 (1992)

    Article  Google Scholar 

  22. M. Parras, M. Vallet-Regi, J.M. Gonzalez-Calbet, M. Alario-Franco, J.C. Grenier, J. Solid State Chem. 74, 110 (1988)

    Article  Google Scholar 

  23. T.C. Gibb, M. Matsuo, J. Solid State Chem. 81, 83 (1989)

    Article  Google Scholar 

  24. A. Elzubair, M. ElMassalami, Physica B 225, 53 (1996)

    Article  Google Scholar 

  25. P. Battle, T. Gibb, P. Lightfoot, M. Matsuo, J. Solid State Chem. 85, 38 (1990)

    Article  Google Scholar 

  26. M. Takano, J. Kawachi, N. Nakanishi, Y. Takeda, Bull. Inst. Chem. Res. Kyoto Univ. 61, 406 (1983)

    Google Scholar 

  27. T. Kawakami, S. Nasu, T. Sasaki, K. Kuzushita, S. Morimoto, S. Endo, T. Yamada, S. Kawasaki, M. Takano, Phys. Rev. Lett. 88, 037602 (2002)

    Article  Google Scholar 

  28. M. Takano, J. Kawachi, N. Nakanishi, Y. Takeda, J. Solid State Chem. 39, 75 (1981)

    Article  Google Scholar 

  29. M. Takano, J. Kawachi, N. Nakanishi, Y. Takeda, J. Solid State Chem. 39, 75 (1981)

    Article  Google Scholar 

  30. S.K. Park, T. Ishikawa, Y. Tokura, J.Q. Li, Y. Matsui, Phys. Rev. B 60, 10788 (1999)

    Article  Google Scholar 

  31. N. Ichikawa, M. Yamamoto, T. Terashima, M. Takano, Physica B 329–333, 799 (2003)

    Article  Google Scholar 

  32. H. Guo, Y. Hosaka, H. Seki, T. Saito, N. Ichikawa, Y. Shimakawa, J. Solid State Chem. 246, 199 (2017)

    Article  Google Scholar 

  33. J. Gonzalez-Calbet, M. Vallet-Regi, M. Alario-Franco, Mat. Res. Bull. 18, 285 (1983)

    Article  Google Scholar 

  34. J. Hudspeth, G. Stewart, A. Studer, D. Goossens, J. Phys. Chem. Solids 72, 1543 (2011)

    Article  Google Scholar 

  35. M. Takano, N. Nakanishi, Y. Takeda, S. Naka, T. Takada, Mater. Res. Bull. 12, 923 (1977)

    Article  Google Scholar 

  36. T. Takeda, R. Kanno, Y. Kawamoto, M. Takano, S. Kawasaki, T. Kamiyama, F. Izumi, Solid State Sci. 2, 673 (2000)

    Article  Google Scholar 

  37. J. Rodrguez-Carvajal, Physica B 192, 55 (1993)

    Article  Google Scholar 

  38. R. Shannon, Acta Crystallogr A 32, 751 (1976)

    Article  Google Scholar 

  39. S. Zhang, S. Tan, L. Pi, Y. Zhang, J. Magn. Magn. Mater. 322, 3381 (2010)

    Article  Google Scholar 

  40. M.G. Masud, A. Ghosh, B.K. Chaudhuri, K. Hsiao, H.D. Yang, J. Appl. Phys. 110, 113719 (2011)

    Article  Google Scholar 

  41. A. Ecija, K. Vidal, A. Larraaga, A. Martnez-Amesti, M.I.A.L. Ortega-San-Martn, Solid State Ionics 201, 35 (2001)

    Article  Google Scholar 

  42. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  Google Scholar 

  43. J. Matsuno, T. Mizokawa, A. Fujimori, Y. Takeda, S. Kawasaki, M. Takano, Phys. Rev. B 66, 193103 (2002)

    Article  Google Scholar 

  44. T. Ishikawa, S.K. Park, T. Katsufuji, T. Arima, Y. Tokura, Phys. Rev. B 58, R13326 (1998)

    Article  Google Scholar 

  45. E. Garcia-Gonzalez, M. Parras, J. Gonzalez-Calbet, M. Vallet-Regi, J. Solid State Chem. 124, 278 (1996)

    Article  Google Scholar 

  46. E. Garcia-Gonzalez, M. Parras, J. Gonzalez-Calbet, M. Vallet-Regi, J. Solid State Chem. 125, 125 (1996)

    Article  Google Scholar 

  47. P. Adler, A. Lebon, V. Damljanović, C. Ulrich, C. Bernhard, A.V. Boris, A. Maljuk, C.T. Lin, B. Keimer, Phys. Rev. B 73, 094451 (2006)

    Article  Google Scholar 

  48. J.B. Mackesney, R.C. Sherwood, J.F. Potter, J. Chem. Phys. 43, 1907 (1965)

    Article  Google Scholar 

  49. L. Sun, H. Qin, K. Wang, M. Zhao, J. Hu, Mater. Chem. Phys. 125, 305 (2011)

    Article  Google Scholar 

  50. C. Solis, M. Rossell, G. Garcia, A. Figueras, G.V. Tendeloo, J. Santiso, Solid State Ionics 179, 1996 (2008)

    Article  Google Scholar 

  51. T. Kawakami, S. Nasu, T. Sasaki, K. Kuzushita, S. Morimoto, S. Endo, S. Kawasaki, M. Takano, J. Phys.: Condens. Matter 14, 10713 (2002)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the collaboration of Flavio Garcia for assistance in use of the low-temperature X-ray diffractogram facilities at CBPF (Brazil) and Narcizo M. Souza Neto and Ricardo Reis for assistance in the use of pressure-dependent Synchrotron diffraction facilities of LNLS (Brazil). We also gratefully acknowledge partial financial support from Brazilian agency CNPq and Mexican agency CONACyT (CB-2015-0 No. 253888).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O. Camacho.

Appendix: Procedures used for \(\hbox {La}_{1+x} \hbox {Ba}_{2-x} \hbox {Fe}_{3} \hbox {O}_{8+\delta }\) synthesis

Appendix: Procedures used for \(\hbox {La}_{1+x} \hbox {Ba}_{2-x} \hbox {Fe}_{3} \hbox {O}_{8+\delta }\) synthesis

The precursors \(\hbox {La}_{2} \hbox {O}_{3} \, (99.9 \, \%)\), \(\hbox {Ba}_{2} \hbox {O}_{3} \, (99.0 \, \%)\), and \(\hbox {Fe}_{2} \hbox {O}_{3} \, (99.995 \, \%)\)—all Sigma-Aldrich—were preheated for 8 h at, respectively, 800, 800 , and 400 °C. Then, for each \(\hbox {La}_{1+x} \hbox {Ba}_{2-x} \hbox {Fe}_{3} \hbox {O}_{8+\delta }\) sample, stoichiometric amount of each component were mixed together, pelletized, and afterwards subjected to conventional solid state reaction procedure with treatment at different temperatures and in different atmospheres so as to control the oxygen content.

With the aim of evaluating the influence of synthesis procedures on the structural and physical properties of \(\hbox {La}_{1+x} \hbox {Ba}_{2-x} \hbox {Fe}_{3} \hbox {O}_{8+\delta }\), two different sets of samples were prepared:

The first set, see Fig. 11a, was calcined at 1000 °C and synthesized at 1125 °C for 72 h within an open-to-air furnace. Intermediate grinding and pelletizing step were undertaken. The final step consisted in oxygen (or argon) treatment at 1125 °C for 72 h in oxygen flux for 72 h, afterwards cooled at rate of \(3^{\,\circ } \hbox {C}/\hbox {min}\) down to 600 °C, and finally furnace-cooled.

The second set, see Fig. 11b, were calcinated at 870 °C for 10 h, pre-reacted at 1000 °C for 12 h, and sintered at 1150 °C for 18 h. These steps were followed by annealing in air at 870 °C for 18 h. Afterwards, re-pulverized, pelletized, treated at 1300 °C in oxygen (or argon) flux for 72 h, afterwards cooled at rate of \(3^{\, \circ } \hbox {C}/\hbox {min}\) down to 400 °C, and finally furnace-cooled.

Fig. 11
figure 11

Time-temperature profile during the synthesis of \(\hbox {La}_{1+x} \hbox {Ba}_{2-x} \hbox {Fe}_{3} \hbox {O}_{8+\delta }\) samples. The profile consists of a series of thermal ramping/soaking steps with intermediate grinding and pelletizing. The final steps were usually carried out under oxygen (or argon) ambient pressure at specified temperature for 72 h and afterwards cooled down, under controlled rate, to 400 or 600 °C. Afterwards left to be furnace-cooled. a Procedures undertaken for the first set of samples (see above paragraphs). b Procedures undertaken for the synthesis of the second set of samples (see above). For the final steps, the temperature was ramped and hold, first, at 1100 °C for 8 h and afterwards at 1300 °C for 72 h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho, C.O., Falconi, R. & ElMassalami, M. Influence of chemical substitution and pressure on structure, resistivity and magnetism of La1+xBa2−xFe3O8+δ (x = 0, 0.5, 1; 0 < δ < 1). J Mater Sci: Mater Electron 29, 15512–15522 (2018). https://doi.org/10.1007/s10854-018-9106-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9106-0

Navigation