Skip to main content

Advertisement

Log in

Enhanced electrochemical performances of heteroatom-enriched carbon with hierarchical pores prepared by trehalose as a pore-forming agent and a simple one-step carbonization/activation process for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is highly desired to simultaneously introduce active heteroatoms and abundant hierarchical pore structures for enhanced electrochemical performances on carbon materials. Herein, trehalose as a pore-forming agent was added into polyvinylpyrrolidone/melamine formaldedyde resin mixture with high concentrations of nitrogen and oxygen. Then a simple one-step carbonization/activation process was adopted and heteroatom-enriched carbon with hierarchical pores (HPC) was fabricated successfully. HPC/HPC symmetric supercapacitors were assembled using KOH electrolyte. It is clearly demonstrated that due to the pore-forming action of trehalose HPC shows the porous honeycomb, interconnected and worm-like pore structure, which is favorable to enhance the double-layer capacitance. It is confirmed that in our system the three active species of pyridinic nitrogen (N-6), pyrrolic nitrogen (N-5) and quinone type oxygen (O-I) are responsible for the pseudocapacitive behavior. Based on XPS, nitrogen adsorption/desorption isotherms and electrochemical impedance spectroscopy, it is deduced that the ratio-optimized HPC-T30 exhibits high concentration of three active species (8.17 at.%), increased specific area (351.26 m2 g−1) and tuned hierarchical pore structures with substantial micropores (micropore area of 321.68 m2 g−1) and a small amount of mesopores and macropores, which lead to decrease of charge transfer resistance, increase of transfer rate of electrolyte ions in the pores and excellent electrochemical performances. In cyclic voltammetry tests of three-electrode system and galvanostatic charge/discharge tests of two-electrode system, HPC-T30 displays high specific capacitance, 46% and 1.2-time enhancement compared to untreated HPC-T0, respectively. The optimized HPC-T30/HPC-T30 supercapacitor delivers the energy density of 6.69 W h kg−1 in 6 M KOH electrolyte. Furthermore, the supercapacitor shows a capacitance retention of 91.16% up to 6000 cycles and the coulombic efficiency reaches nearly 100% for each charged/discharge cycle, demonstrating its good cyclic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.H. Xiong, G. Waller, D. Ding, D.C. Chen, B. Rainwater, B.T. Zhao, Z.X. Wang, M.L. Liu, Nano Energy 16, 71–80 (2015)

    Article  Google Scholar 

  2. J.L. Lv, Z.Q. Wang, T.X. Liang, M.K. Yang, H. Suzuki, Miura, J. Electroanal. Chem. 779, 595–601 (2017)

    Google Scholar 

  3. X.H. Xiong, D. Ding, D.C. Chen, G. Waller, Y.F. Bu, Z.X. Wang, M.L. Liu, Nano Energy 11, 154–161 (2015)

    Article  Google Scholar 

  4. W.Y. Chen, X.Q. Tao, D. Wei, H.S. Wang, Q. Yu, Y.C. Li, J. Mater. Sci. Mater. Electron. 27, 1357–1362 (2016)

    Article  Google Scholar 

  5. H.M. Luo, F.B. Zhang, X. Zhao, Y.X. Sun, K.F. Du, H.X. Feng, J. Mater. Sci. Mater. Electron. 25, 538–545 (2014)

    Article  Google Scholar 

  6. R.T. Wang, P.Y. Wang, X.B. Yan, J.W. Lang, C. Peng, Q.J. Xue, ACS Appl. Mater. Interfaces 4, 5800–5806 (2012)

    Article  Google Scholar 

  7. S.T. Senthilkumar, J. Kim, Y. Wang, H.T. Hang, Y. Kim, J. Mater. Chem. A 4, 4934–4940 (2016)

    Article  Google Scholar 

  8. Y.F. Nie, Q. Wang, X.Y. Chen, Z.J. Zhang, J. Power Sources 320, 140–152 (2016)

    Article  Google Scholar 

  9. D. Zhang, L.Y. Lei, Y.H. Shang, J. Mater. Sci. Mater. Electron. 27, 3531–3539 (2016)

    Article  Google Scholar 

  10. K. Gopalsamy, J. Balamurugan, T.D. Thanh, N.H. Kim, J.H. Lee, Chem. Eng. J. 312, 180–190 (2017)

    Article  Google Scholar 

  11. J.M. Rosas, R.R. Rosas, J.R. Mirasol, Carbon 50, 1523–1537 (2012)

    Article  Google Scholar 

  12. D.Y. Yeom, W. Jeon, N.D.K. Tu, S.Y. Yeo, S.S. Lee, B.J. Sung, H. Chang, J.A. Lim, H. Kim, Sci. Rep. 5, 9817–9827 (2015)

    Article  Google Scholar 

  13. C.L. Long, L.L. Jiang, X.L. Wu, Y.T. Jiang, D.R. Yang, C.K. Wang, T. Wei, Z.J. Fan, Carbon 93, 412–420 (2015)

    Article  Google Scholar 

  14. X.H. Xiong, G.H. Wang, Y.W. Lin, Y. Wang, X. Ou, F.H. Zheng, C.H. Yang, J.H. Wang, M.L. Liu, ACS Nano 10, 10953–10959 (2016)

    Article  Google Scholar 

  15. X.H. Xiong, C.H. Yang, G.H. Wang, Y.W. Lin, X. Ou, J.H. Wang, B.T. Zhao, M.L. Liu, Z. Lin, K. Huang, Energy Environ. Sci. 10, 1757–1763 (2017)

    Article  Google Scholar 

  16. H.L. Shen, J. Zhou, Y.T. Zhao, S. Zhang, X. Bi, S.P. Zhuo, H.Y. Cui, RSC Adv. 6, 58764–58770 (2016)

    Article  Google Scholar 

  17. F. Gao, J.Y. Qu, C. Geng, G.H. Shao, M.B. Wu, J. Mater. Chem. A 4, 7445–7452 (2016)

    Article  Google Scholar 

  18. D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. Zhu, G. Liu, Adv. Funct. Mater. 19, 1800–1809 (2009)

    Article  Google Scholar 

  19. B. Cao, B. Zhang, X.D. Jiang, Y.P. Zhang, C.X. Pan, J. Power Sources 196, 7868–7873 (2011)

    Article  Google Scholar 

  20. J.P. Han, G.Y. Xu, B. Ding, J. Pan, H. Dou, D. MacFarlane, J. Mater. Chem. A 2, 5352–5357 (2014)

    Article  Google Scholar 

  21. J.G. Jiang, L.K. Bao, Y.W. Qiang, Y.C. Xiong, J.Y. Chen, S.Y. Guan, J.D. Chen, Electrochim. Acta 158, 229–236 (2015)

    Article  Google Scholar 

  22. C.L. Wang, L. Sun, Y. Zhou, P. Wan, X. Zhang, J.S. Qiu, Carbon 59, 537–546 (2013)

    Article  Google Scholar 

  23. S.T. Senthilkumar, R.K. Selvan, Y.S. Lee, J.S. Melo, J. Mater. Chem. A 1, 1086–1095 (2013)

    Article  Google Scholar 

  24. J.S. Lee, J. Jun, S. Cho, W. Kim, J. Jang, RSC Adv. 7, 201–207 (2017)

    Article  Google Scholar 

  25. J. Jun, J.S. Lee, D.H. Shin, S.G. Kim, J. Jang, Nanoscale 7, 16026–16033 (2015)

    Article  Google Scholar 

  26. G.Q. Wang, J. Zhang, S. Kuang, J. Zhou, W. Xing, S.P. Zhuo, Electrochim. Acta 153, 273–279 (2015)

    Article  Google Scholar 

  27. M. Yang, Y.R. Zhong, J. Bao, X.L. Zhou, J.P. Wei, Z. Zhou, J. Mater. Chem. A 3, 11387–11394 (2015)

    Article  Google Scholar 

  28. K.S. Kim, S.J. Park, J. Electroanal. Chem. 673, 58–63 (2012)

    Article  Google Scholar 

  29. C.D. Liang, Z.J. Li, S. Dai, Angew. Chem. Int. Edit. 47, 3696–3717 (2008)

    Article  Google Scholar 

  30. J. Górka, M. Jaroniec, Carbon 49, 154–156 (2011)

    Article  Google Scholar 

  31. S.Q. Zhu, Q.L. Chen, Y.Y. Shi, Z.Y. Chen, R.Q. Bao, L. Zhou, L.R. Hou, K.N. Hui, C.Z. Yuan, J. Solid State Electrochem. 20, 713–723 (2016)

    Article  Google Scholar 

  32. P.F. Pang, F.Q. Yan, M. Chen, H.Y. Li, Y.L. Zhang, H.B. Wang, Z. Wu, W.R. Yang, RSC Adv. 6, 90446–90454 (2016)

    Article  Google Scholar 

  33. Y.C. Yuan, C. Zhang, C.Y. Wang, M.M. Chen, J. Solid State Electrochem. 19, 619–627 (2015)

    Article  Google Scholar 

  34. F. Gao, G.H. Shao, J.Y. Qu, S.Y. Lv, Y.Q. Li, M.B. Wu, Electrochim. Acta 155, 201–208 (2015)

    Article  Google Scholar 

  35. J.G. Jiang, H. Chen, Z. Wang, L.K. Bao, Y.W. Qiang, S.Y. Guan, J.D. Chen, J. Colloid Interf. Sci. 452, 54–61 (2015)

    Article  Google Scholar 

  36. Y.F. An, Y.Y. Yang, Z.A. Hu, B.S. Guo, X.T. Wang, X. Yang, Q.C. Zhang, H.Y. Wu, J. Power Sources 337, 45–53 (2017)

    Article  Google Scholar 

  37. H.F. Huang, C.L. Lei, G.S. Luo, Z.Z. Cheng, G.X. Li, S.L. Tang, Y.W. Du, J. Mater. Sci. 51, 6348–6356 (2016)

    Article  Google Scholar 

  38. P. Wang, Y.Y. Zheng, B.M. Li, Synthetic Met. 166, 33–39 (2013)

    Article  Google Scholar 

  39. L.J. Hou, J.L. Zhang, Y.F. Pu, W. Li, RSC Adv. 6, 18026–18032 (2016)

    Article  Google Scholar 

  40. L.L. Fu, Y. Chen, Z.G. Liu, J. Mol. Catal. A 408, 91–97 (2015)

    Article  Google Scholar 

  41. D.J. Merline, S. Vukusic, A.A. Abdala, Poly. J. 45, 413–419 (2013)

    Article  Google Scholar 

  42. S. Ullah, M.A. Bustam, M. Nadeem, M.Y. Naz, W.L. Tan, A.M. Shariff, Sci. World J. 2014, 940502–940507 (2014)

    Google Scholar 

  43. Z.Y. Zhang, C.L. Shao, F. Gao, X.H. Li, Y.C. Liu, J. Colloid Interface Sci. 347, 215–220 (2010)

    Article  Google Scholar 

  44. Y.J. Kim, Y. Abe, T. Yanagiura, K.C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M.S. Dresselhaus, Carbon 45, 2116–2125 (2007)

    Article  Google Scholar 

  45. J. Zhou, H.L. Shen, Z.H. Li, S. Zhang, Y.T. Zhao, X. Bi, Y.S. Wang, H.Y. Cui, S.P. Zhuo, Electrochim. Acta 209, 557–564 (2016)

    Article  Google Scholar 

  46. Z.W. Yang, H.J. Guo, X.H. Li, Z.X. Wang, Z.L. Yan, Y.S. Wang, J. Power Sources 329, 339–346 (2016)

    Article  Google Scholar 

  47. D. Nan, Z.H. Huang, R.T. Lv, L. Yang, J.G. Wang, W.C. Shen, Y.X. Lin, X.L. Yu, L. Ye, H.Y. Sun, F.Y. Kang, J. Mater. Chem. A 2, 19678–19684 (2014)

    Article  Google Scholar 

  48. B.H. Kim, K.S. Yang, H.G. Woo, Mater. Lett. 93, 190–193 (2013)

    Article  Google Scholar 

  49. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, Science 332, 1537–1541 (2011)

    Article  Google Scholar 

  50. S.Q. Zhu, Q.L. Chen, Y.Y. Shi, Z.Y. Chen, R.Q. Bao, L. Zhou, L.R. Hou, K.N. Hui, C.Z. Yuan, J. Solid State Eletrochem. 20, 713–723 (2016)

    Article  Google Scholar 

  51. L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, S.H. Yu, ACS Nano 6, 7092–7102 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial assistance of the National Natural Science Foundation of China (Grant No. 21206034), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Province (Grant No. LC2016003) and Outstanding Youth Science Foundation of Heilongjiang University (Grant No. JCL201202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanli Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Sun, T., Zhang, X. et al. Enhanced electrochemical performances of heteroatom-enriched carbon with hierarchical pores prepared by trehalose as a pore-forming agent and a simple one-step carbonization/activation process for supercapacitors. J Mater Sci: Mater Electron 29, 10689–10701 (2018). https://doi.org/10.1007/s10854-018-9039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9039-7

Navigation