Skip to main content
Log in

Effects of potassium interstitial doping on thermoelectric properties of Sr0.7Ba0.3Nb2O6−δ ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The thermoelectric properties of potassium interstitial doped Sr0.7Ba0.3KxNb2O6−δ ceramics were investigated in the temperature range from 323 to 1073 K. The thermoelectric power factor is improved enormously due to the potassium interstitial doping combined with a reductive calcination method. The potassium dopants not only act as carrier donors but also modulate the electronic structures. Thus, the electrical conductivity increases remarkably, and the Seebeck coefficient, meanwhile, maintains considerable values at high temperatures. Only the moderate doping content x = 0.10 contributes to reducing the lattice thermal conductivity. Thus, the sample Sr0.7Ba0.3K0.1Nb2O6−δ shows the highest ZT value of 0.23 at 1073 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Chen, S. Guo, X. Dong, F. Cao, C. Mao, G. Wang, J. Alloys Compd. 695, 2723 (2017)

    Article  Google Scholar 

  2. Q. Wang, X. Zhang, C.R. Bowen, M. Li, J. Ma, S. Qiu, H. Liu, S. Jiang, J. Alloys Compd. 710, 869 (2017)

    Article  Google Scholar 

  3. M.D. Ewbank, R.R. Neurgaonkar, W.K. Cory, J. Feinberg, J. Appl. Phys. 62, 374 (1987)

    Article  Google Scholar 

  4. P.V. Lenzo, E.G. Spencer, A.A. Ballman, Appl. Phys. Lett. 11, 23 (1967)

    Article  Google Scholar 

  5. S. Lee, R.H.T. Wilke, S. Trolier-McKinstry, S.J. Zhang, C.A. Randall, Appl. Phys. Lett. 96, 031910 (2010)

    Article  Google Scholar 

  6. L.E. Bell, Science 321, 1457 (2008)

    Article  Google Scholar 

  7. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  8. R. Basu, S. Bhattacharya, R. Bhatt, M. Roy, S. Ahmad, A. Singh, M. Navaneethan, Y. Hayakawa, D.K. Aswal, S.K. Gupta, J. Mater. Chem. A 2, 6922 (2014)

    Article  Google Scholar 

  9. G.J. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016)

    Article  Google Scholar 

  10. P.B. Jamieson, S.C. Abrahams, J.L. Bernstein, J. Chem. Phys. 48, 5048 (1968)

    Article  Google Scholar 

  11. N. Kobayashi, in Preparation and Properties of Solid State Materials, vol. 6, ed. by W.R. Wilcox (Marcel Dekker Inc., New York, 1981)

    Google Scholar 

  12. H. Ohta, K. Sugiura, K. Koumoto, Inorg. Chem. 47, 8429 (2008)

    Article  Google Scholar 

  13. I. Terasaki, J. Appl. Phys. 110, 053705 (2011)

    Article  Google Scholar 

  14. A. Achour, K. Chen, M.J. Reece, Z. Huang, J. Alloys Compd. 735, 861 (2018)

    Article  Google Scholar 

  15. M.A. Madre, Sh Rasekh, M.A. Torres, P. Bosque, J.C. Diez, A. Sotelo, J. Mater. Sci. 52, 4833 (2017)

    Article  Google Scholar 

  16. C.G. Aguilar, C.E. Moreno, M.P. Castillo, F. Caballero-Briones, J. Mater. Sci. 53, 1646 (2018)

    Article  Google Scholar 

  17. S. Lee, S. Dursun, C. Duran, C.A. Randall, J. Mater. Res. 26, 26 (2011)

    Article  Google Scholar 

  18. C.S. Dandeneau, T.W. Bodick, R.K. Bordia, F.S. Ohuchi, J. Am. Ceram. Soc. 96, 2230 (2013)

    Article  Google Scholar 

  19. G.D. Mahan, J.O. Sofo, J. Electron. Mater. 42, 1375 (2013)

    Article  Google Scholar 

  20. J.A. Bock, S. Trolier-McKinstry, G.D. Mahan, C.A. Randall, Phys. Rev. B 90, 115106 (2014)

    Article  Google Scholar 

  21. Y. Li, J. Liu, C.L. Wang, W.B. Su, Y.H. Zhu, J.C. Li, L.M. Mei, Chin. Phys. B 24, 047201 (2015)

    Article  Google Scholar 

  22. Y. Li, J. Liu, Z. Wang, Y.C. Zhou, C.L. Wang, J.C. Li, Y.H. Zhu, M.K. Li, L.M. Mei, Phys. Scr. 90, 025801 (2015)

    Article  Google Scholar 

  23. Y. Li, J. Liu, Y.Q. Hou, Y.C. Zhang, Y.C. Zhou, W.B. Su, Y.H. Zhu, J.C. Li, C.L. Wang, Scr. Mater. 109, 80 (2015)

    Article  Google Scholar 

  24. Y. Li, J. Liu, Y.C. Zhang, Y.C. Zhou, J.C. Li, W.B. Su, J.Z. Zhai, H.C. Wang, C.L. Wang, Ceram. Int. 42, 1128 (2016)

    Article  Google Scholar 

  25. J.H. Chan, J.A. Bock, H.Z. Guo, S. Trolier-Mckinstry, C.A. Randall, J. Mater. Res. 32, 1160 (2017)

    Article  Google Scholar 

  26. Y. Li, J. Liu, Y.C. Zhang, Y.F. Chen, J.C. Li, W.B. Su, H.C. Wang, J.Z. Zhai, T. Wang, C.L. Wang, J. Eur. Ceram. Soc. 37, 3039 (2017)

    Article  Google Scholar 

  27. Y. Li, J. Liu, Y.C. Zhang, Y.F. Chen, J.C. Li, W.B. Su, H.C. Wang, C.L. Wang, Ceram. Int. 43, 13345 (2017)

    Article  Google Scholar 

  28. J. Liu, Y.C. Zhang, Z. Wang, M.K. Li, W.B. Su, M.L. Zhao, S.L. Huang, S.Q. Xia, C.L. Wang, Rev. Sci. Instrum. 87, 064701 (2016)

    Article  Google Scholar 

  29. F.J. Blatt, P.A. Schroeder, C.L. Foiles, D. Greig, Thermoelectric Power of Metals. (Plenum, New York, 1976)

    Book  Google Scholar 

  30. H. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Basic Research Program of China (Grant No. 2013CB632506) and National Natural Science Foundation of China (Grant Nos. 51202132, 11374186 and 51231007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu or Chunlei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Y., Liu, J. et al. Effects of potassium interstitial doping on thermoelectric properties of Sr0.7Ba0.3Nb2O6−δ ceramics. J Mater Sci: Mater Electron 29, 9137–9141 (2018). https://doi.org/10.1007/s10854-018-8941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8941-3

Navigation