Skip to main content
Log in

Graphite nanoplatelet/rubbery epoxy composites as adhesives and pads for thermal interface applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composites of graphite nanoplatelets (GNPs) and rubbery epoxy (RE) resins as adhesives and pads are evaluated as thermal interface materials (TIM). GNP-15 and GNP-5 (15 and 5 µm across, respectively) were loaded in RE by 3-roll milling to produce GNP/RE composites. The role of composite processing techniques on the texture, thermal and electrical conductivities and compression properties of composites was studied and compared. Scanning electron microscopy revealed uniform dispersion of GNPs in RE, regardless of loading and X-ray diffraction texture measurement showed less platelet alignment in the composites at low loadings. Thermal conductivities of 20 wt% GNP-15/RE (3.29 W/m K) and 35 wt% GNP-5/RE composite (2.36 W/m K) were both significantly higher than pure RE (0.17 W/m K). GNP/RE retained good compliance, compressive moduli at 20 wt% loading being comparable to commercial BN/silicone TIM. Although thermal contact resistance of GNP/RE was higher than for commercial paste, its interfacial thermal transport outperformed GNP/silicone (due to RE’s strongly adhesive nature) and, across thick bond lines, outperformed reported GNP-pastes. The 20 wt% GNP-15/RE thermal pad had significantly lower thermal contact resistance than other GNP/RE pads. This decreased with increasing applied pressure, being comparable to commercial BN/silicone pad. GNP/RE composites are thus promising candidates for thermal interface adhesives and pads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.D.L. Chung, J. Mater. Eng. Perform. 10, 56–59 (2001)

    Article  CAS  Google Scholar 

  2. J.P. Gwinn, R.L. Webb, Microelectron. J. 34, 215–222 (2003)

    Article  CAS  Google Scholar 

  3. R. Linderman, T. Brunschwiler, B. Smith et al., in THERMINIC 2007, 2007

  4. F. Sarvar, D.C. Whalley, P.P. Conway, IEEE 2006 Electronics Systemintegration Technology Conference, Dresden, 2006, pp. 1292–1302

  5. K.C. Otiaba, N.N. Ekere, R.S. Bhatti et al., Microelectron. Reliab. 51, 2031–2043 (2011)

    Article  Google Scholar 

  6. C. Lin, D.D.L. Chung, Carbon 47, 295–305 (2009)

    Article  CAS  Google Scholar 

  7. J. Liu, T. Wang, B. Carlberg et al., in Electronics System-Integration Technology Conference, 2008 vol. 2, pp. 351–358

  8. C.-K. Leong, Y. Aoyagi, D.D.L. Chung, Carbon 44, 435–440 (2006)

    Article  CAS  Google Scholar 

  9. A.A. Balandin, S. Ghosh, W. Bao et al., Nano Lett. 8(3), 902–907 (2008)

    Article  CAS  Google Scholar 

  10. M.H. Al-Saleh, U. Sundararaj, Carbon 47(1), 2–22 (2009)

    Article  CAS  Google Scholar 

  11. A. Yu, P. Ramesh, M.E. Itkis et al., J. Phys. Chem. C 111, 7565–7569 (2007)

    Article  CAS  Google Scholar 

  12. D. Fabris, M. Rosshirt, C. Cardenas et al., J. Electron. Packag. 133(2), 020902 (2011)

    Article  Google Scholar 

  13. Z. Lingbo, D.W. Hess, P. Wong, in Proceedings 57th Electronic Components and Technology Conference, 2007 (ECTC07), 2007, pp. 2006–2010

  14. K.M.F. Shahil, A.A. Balandin, Solid State Commun. 152(15), 1331–1340 (2012)

    Article  CAS  Google Scholar 

  15. B. Li, W.-H. Zhong, J. Mater. Sci. 46, 5595–5614 (2011)

    Article  CAS  Google Scholar 

  16. Q. Mu, S. Feng, Thermochim. Acta 462, 70–75 (2007)

    Article  CAS  Google Scholar 

  17. M.A. Raza, A.V.K. Westwood, C. Stirling, Mater. Chem. Phys. 132(1), 63–73 (2012)

    Article  CAS  Google Scholar 

  18. M.A. Raza, A. Westwood, C. Stirling, Carbon 50(1), 84–97 (2012)

    Article  CAS  Google Scholar 

  19. M.A. Raza, A.V.K. Westwood, A.P. Brown et al., Compos. Sci. Technol. 72(3), 467–475 (2012)

    Article  CAS  Google Scholar 

  20. M.A. Raza, A. Westwood, A. Brown et al., Carbon 49(13), 4269–4279 (2011)

    Article  CAS  Google Scholar 

  21. M. Raza, A. Westwood, A. Brown et al., J. Mater. Sci.: Mater. Electron. 23, 1–9 (2012)

    Google Scholar 

  22. M.A. Raza, A. Westwood, C. Stirling, Mater. Design 85, 67–75 (2015)

    Article  CAS  Google Scholar 

  23. S. Ganguli, A.K. Roy, D.P. Anderson, Carbon 46, 806–817 (2008)

    Article  CAS  Google Scholar 

  24. B. Debelak, K. Lafdi, Carbon 45, 1727–1734 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank EPSRC, UK, Morgan Advanced Materials, UK and Higher Education Commission of Pakistan (Grant No. 20-3283) for providing financial support for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Ali Raza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M.A., Westwood, A. & Stirling, C. Graphite nanoplatelet/rubbery epoxy composites as adhesives and pads for thermal interface applications. J Mater Sci: Mater Electron 29, 8822–8837 (2018). https://doi.org/10.1007/s10854-018-8900-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8900-z

Navigation