Skip to main content
Log in

Optically poled SHG and THG effects in cesium doped zinc oxide nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The hexagonal wurtzite structure of the synthesized undoped and cesium (Cs) doped zinc oxide (ZnO) nanorods were confirmed with X-ray diffraction patterns. Further analysis with field emission scanning electron microscope images and energy dispersive X-ray spectra revealed the c-axis oriented hexagonal morphology of the samples with chemical composition. Optical poling through 337 nm nitrogen laser has been adopted to enhance the nonlinear optical properties. When the power density of the fundamental laser beam from Nd:YAG laser of 1064 nm matched with the band edge of the samples, resonant absorption takes place leading to the enhanced NLO properties. The interstitial occupancy of the dopants in 3 and 5 mol% CsZnO increases the band tailing in the forbidden energy gap. The minimum of Urbach energy calculated from UV–Vis absorption spectra corresponding to 1 mol% CsZnO revealed more ordering in the sample. More enhanced second and third order NLO effects were observed in this sample having larger crystallite size, lesser diameter, lesser band gap, minimum urbach energy and higher electron–phonon interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Sans, A. Segura, F.J. Manjon, B. Mari, A. Munoz, Optical properties of wurtzite and rock-salt ZnO under pressure. Microelectron. J. 36, 928 (2005)

    Article  Google Scholar 

  2. C. Klingshirn, ZnO: from basics towards applications. Phys. Status Solidi B 244, 3027 (2007)

    Article  Google Scholar 

  3. H. Cao, J.Y. Wu, H.C. Ong, J.Y. Dai, R.P.H. Chang, Second harmonic generation in laser ablated zinc oxide thin films. Appl. Phys. Lett. 73, 572 (1998)

    Article  Google Scholar 

  4. G. Wang, G.T. Kiehne, G.K.L. Wong, J.B. Ketterson, X. Liu, R.H. Chang, Large second harmonic response in ZnO thin films. Appl. Phys. Lett. 80, 401 (2002)

    Article  Google Scholar 

  5. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, Second-harmonic efficiency of ZnO nanolayers. Appl. Phys. Lett. 84, 170 (2004)

    Article  Google Scholar 

  6. G.I. Petrov, V. Shcheslavskiy, V.V. Yakovlev, Efficient thid-harmonic generation in a thin nanocrystalline film of ZnO. Appl. Phys. Lett. 83, 3993 (2003)

    Article  Google Scholar 

  7. X. Zhang, W. Ji, S. Tang, Determination of optical nonlinearities and carrier lifetime in ZnO. J. Opt. Soc. Am. B 14, 1951 (1997)

    Article  Google Scholar 

  8. H. Fujiwara, T. Suzuki, R. Niyuki, K. Sasaki, ZnO nanorod array random lasers fabricated by a laser-induced hydrothermal synthesis. New J. Phys. 18, 103046 (2016)

    Article  Google Scholar 

  9. A. Chrissanthopoulos, S. Baskoutas, N. Bouropoulos, V. Dracopoulos, P. Poulopoulos, S.N. Yannopoulos, Synthesis and characterization of ZnO/NiO p-n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photonics Nanostruct. Fundam. Appl. 9, 132 (2011)

    Article  Google Scholar 

  10. X. Liu, X. Wu, H. Cao, R.P.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95(6), 3141 (2004)

    Article  Google Scholar 

  11. A.L. Yang, H.Y. Wei, X.L. Liu, H.P. Song, G.L. Zheng, Y. Guo, C.M. Jiao, S.Y. Yang, Q.S. Zhu, Z.G. Wang, Synthesis and characterization of well-aligned Zn1 – xMgxO nanorods and film by metal organic chemical vapor deposition. J. Cryst. Growth 311, 278 (2009)

    Article  Google Scholar 

  12. M.F. Khouzani, Z. Fereshteh, M.R. Loghman-Estarki, R.S. Razavi, Different morphologies of ZnO nanostructures via polymeric complex sol–gel method: synthesis and characterization. J. Sol-Gel Sci. Technol. 64(1), 193–199 (2012)

    Article  Google Scholar 

  13. S.F. Mousavi, F. Davar, M.R. Loghman-Estarki, Controllable synthesis of ZnO nanoflowers by the modified sol–gel method. J. Mater. Sci.: Mater. Electron. 27(12), 12985–12995 (2016)

    Google Scholar 

  14. S. Baruah, J. Dutta, Effect of seeded substrates on hydrothermally grown ZnO nanorods. J. Sol-Gel Sci. Technol. 50, 456 (2009)

    Article  Google Scholar 

  15. A. Douayar, A. Belayachi, M. Abd-Lefdil, K. Nouneh, Z. Laghfour, I.V. Kityk, A. Slezak, R. Miedzisnki, Optical operation by electro-optical features of ZnO nanocrystalline films doped by Tm3+ ions. J. Alloys Compd. 550, 345 (2013)

    Article  Google Scholar 

  16. I.V. Kityk, J. Ebothe, A. Elchichou, M. Addou, A. Bougrine, B. Sahraoui, Linear electro-optics effect in ZnO-F film-glass interface. Phys. Status Solidi B 234, 553 (2002)

    Article  Google Scholar 

  17. J. Ebothe, I.V. Kityk, S. Benet, B. Claudet, K.J. Plucinski, K. Ozga, Photoinduced effects in ZnO films deposited on MgO substrates. Opt. Commun. 268, 269–272 (2006)

    Article  Google Scholar 

  18. B. Kulyk, Z. Essaidi, J. Luc, Z. Sofiani, G. Boudebs, B. Sahraoui, Second and third order nonlinear optical properties of microrod ZnO films deposited on sapphire substrates by thermal oxidation of metallic zinc. J. Appl. Phys. 102, 113113 (2007)

    Article  Google Scholar 

  19. K. Ozga, T. Kawaharamura, A. Ali Umar, M. Oyama, K. Nouneh, A. Slezak, S. Fujita, M. Piasecki, A.H. Reshak, I.V. Kityk, Second order optical effects in Au nanoparticle-deposited ZnO nanocrystallite films. Nanotechnology 19, 185709 (2008)

    Article  Google Scholar 

  20. A. Douayar, M. Abd-Lefdil, K. Nouneh, P. Prieto, R. Diaz, A.O. Fedorchuk, I.V. Kityk, Photoinduced Pockels effect in the Nd-doped ZnO oriented nanofilms. Appl. Phys. B 110, 419–423 (2013)

    Article  Google Scholar 

  21. B. Santoshkumar, S. Kalyanaraman, R. Vettumperumal, R. Thangavel, I.V. Kityk, S. Velumani, Structure-dependent anisotropy of the photoinduced optical nonlinearity in calcium doped ZnO nanorods grown by low cost hydrothermal method for photonic device applications. J. Alloys Compd. 658, 435–439 (2016)

    Article  Google Scholar 

  22. M. Abd-Lefdil, A. Belayachi, S. Pramodini, P. Poornesh, A. Wojciechowski, A.O. Fedorchuk, Structural, photoinduced optical effects and third-order nonlinear optical studies on Mn doped and Mn-Al codoped ZnO thin films under continuous wave laser irradiation. Laser Phys. 24, 035404 (2014)

    Article  Google Scholar 

  23. K. Spoorthi, S. Pramodini, I.V. Kityk, M. Abd-Lefdil, M. Sekkati, A. El.Fakir, A. Rao, G. Sanjeev, P. Poornesh, Investigations on nonlinear optical properties of electron beam treated Gd:ZnO thin films for photonic device applications. Laser Phys. 27, 065403 (2017)

    Article  Google Scholar 

  24. Z.M. Htwe, Y.-D. Zhang, C.-B. Yao, H. Li, Y. Pin, Photoluminescence and enhanced third order nonlinear optical properties of InZnO thin films. Opt. Mater. 73, 666 (2017)

    Article  Google Scholar 

  25. N. Shettigar, S. Pramodini, I.V. Kityk, M. Abd-Lefdil, E.M. Eljald, M. Regragui, A. Antony, A. Rao, G. Sanjeev, K.C. Ajeyakashi, P. Poornesh, Tuning the third-order nonlinear optical properties of In:ZnO thin films by 8 MeV electron beam irradiation. J. Phys. Chem. Solids 110, 260 (2017)

    Article  Google Scholar 

  26. A. Antony, S. Pramodini, I.V. Kityk, M. Abd-Lefdil, A. Douayar, F. Cherkaoui, E. Moursli, G. Sanjeev, K.B. Manjunatha, P. Poornesh, Effect of electron beam on structural, linear and nonlinear properties of nanostructured Fluorine doped ZnO thin films. Physica E 94, 190 (2017)

    Article  Google Scholar 

  27. J. Ebothe, I.V. Kityk, S. Benet, B. Claudet, K.J. Plucinski, K. Ozga, Photoinduced effects in ZnO films deposited on MgO substrates. Opt. Commun. 268, 269 (2006)

    Article  Google Scholar 

  28. J. Wasylak, M. Makowsha-Janusik, B. Sahraoui, D. Dorasz, A. Migalska-Zalas, W. Imiołek, J. Kucharski, J. Krasowski, I.V. Kityk, K.J. Plucinski, Non-linear optical effects in the rare-earth doped oxide glasses. Nonlinear Opt. 29, 99 (2002)

    Article  Google Scholar 

  29. I.V. Kityk, B. Sahraoui, Photoinduced two-photon absorption and second-harmonic generation in As2Te3–CaCl2–PbCl2 glasses. Phys. Rev. B 60, 942 (1999)

    Article  Google Scholar 

  30. L. Zuo, S. Zhang, S. Dai, H. Chen, Versatility and robustness of ZnO:Cs electron transporting layer for printable organic solar cells. RSC Adv. 5, 49369–49375 (2015)

    Article  Google Scholar 

  31. W. Hui Peng, F. Xu, J. Zhou, C. Zhang, Li, Enhanced efficiency of inverted polymer solar cells using surface modified Cs-doped ZnO as electron transporting layer. Synth. Met. 205, 164–168 (2015)

    Article  Google Scholar 

  32. S. Kwon, K.-G. Lim, M. Shim, H.C. Moon, J. Park, G. Jeon, J. Shin, K. Cho, T.-W. Lee, J.K. Kim, Air-stable inverted structure of hybrid solar cells using a cesium-doped ZnO electron transport layer prepared by a sol–gel process. J. Mater. Chem. A 1, 11802–11808 (2013)

    Article  Google Scholar 

  33. K. Mirabbaszadeh, M. Ahmadi, M. Khosravi, R. Mokhtari, S. Salari, Hydrothermal synthesis of vertically aligned cesium-doped ZnO nanorods for solar cell applications. J. Inorg. Organomet. Polym. 23, 1219–1225 (2013)

    Article  Google Scholar 

  34. B. Santoshkumar, A. Biswas, S. Kalyanaraman, R. Thangavel, G. Udayabhanu, G. Annadurai, S. Velumani, Influence of defect luminescence and structural modification on the electrical properties of magnesium doped zinc oxide nanorods. Superlattices Microstruct. 106, 58–66 (2017)

    Article  Google Scholar 

  35. S. Kalyanaraman, R. Thangavel, R. Vettumperumal, High mobility formation of p-type Al doped ZnO:N films anneaed under NH3 ambient. J. Phys. Chem. Solids 74, 504 (2013)

    Article  Google Scholar 

  36. G. Amin, M.H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomater. 2011, 1 (2011)

    Article  Google Scholar 

  37. H.-C. Wu, Y.-C. Peng, T.-P. Shen, Electronic and optical properties of substitutional and interstitial Si-doped ZnO. Materials 5, 2088–2100 (2012)

    Article  Google Scholar 

  38. S. Dag, S. Wang, L.-W. Wang, Large surface dipole moments in ZnO nanorods. Nano Lett. 11, 2348–2352 (2011)

    Article  Google Scholar 

  39. T. Tritschler, O.D. Mucke, M. Wegener, U. Morgner, F.X. Kartner, Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics. Phys. Rev. Lett. 90, 217404 (2003)

    Article  Google Scholar 

  40. N. Rathore, D.V. Sridhara Rao, S.K. Sarkar, Growth of a polarity controlled ZnO nanorod array on a glass/FTO substrate by chemical bath deposition. RSC Adv. 5, 28251–28257 (2015)

    Article  Google Scholar 

  41. S.K. Das, M. Bock, C.O. Neill, R. Grunwald, K.M. Lee, H.W. Lee, S. Lee, F. Rotermund, Efficient second harmonic generation in ZnO nanorod arrays with broadband ultrashort pulses. Appl. Phys. Lett. 93, 181112 (2008)

    Article  Google Scholar 

  42. S.J. Ikhmayies, R.N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS:In thin films. J. Mater. Res. Technol. 2(3), 221–227 (2013)

    Article  Google Scholar 

  43. R. Khordad, H. Bahramiyan, The second and third-harmonic generation of modified Gaussian quantum dots under influence of polaron effects. Superlattices Microstruct. 76, 163–173 (2014)

    Article  Google Scholar 

  44. R. Vettumperumal, S. Kalyanaraman, B. Santoshkumar, R. Thangavel, Estimation of electron–phonon coupling and Urbach energy in group-I elements doped ZnO nanoparticles and thin films by sol–gel method. Mater. Res. Bull. 77, 101–110 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

B. Santoshkumar thanks the UGC-SERO, Hyderabad, India for providing the Teacher fellowship under UGC-Faculty Development Programme vide F.No. FIP-TNMS039/001(TF)/PHYSICS/Ph.D/XII PLAN/2014-15 dated December 2014. Also he acknowledges the Solar Energy Research Laboratory, Department of Applied Physics, Indian Institute of Technology, Dhanbad – 826 004, India for the facilities provided for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalyanaraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santoshkumar, B., Kalyanaraman, S., Thangavel, R. et al. Optically poled SHG and THG effects in cesium doped zinc oxide nanorods. J Mater Sci: Mater Electron 29, 15291–15298 (2018). https://doi.org/10.1007/s10854-018-8794-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8794-9

Navigation