Skip to main content
Log in

Different morphologies of ZnO nanostructures via polymeric complex sol–gel method: synthesis and characterization

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Various morphologies of ZnO nanostructures, such as nanoparticles, nanorods and nanoflowers have been achieved controllably by polymeric sol–gel method. In this approach, zinc nitrate Zn(NO3)2·6H2O, citric acid and ethylene glycol were used as the source of Zn2+, the chelating agent and the solvent agent, respectively. The microstructure of the ZnO nanostructures was characterized by X-ray diffractometry, scanning electron microscopy with the energy dispersive X-ray spectroscopy, transmission electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy. The effect of ethylene glycol to citric acid mole ratio on the morphology and structure of the products was discussed. The ZnO nanoparticles with diameter between 24 ± 2 nm was obtained with EG:CA mole ratio equal to 2:1. The optical properties of as-obtained power were investigated by ultraviolet–visible spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xia Y, Yang P, Sun Y, Wu Y, Mare B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:323–327

    Article  Google Scholar 

  2. Salavati-Niasari M, Davar F, Loghman-Estarki MR (2009) J Alloys Compd 475:782–788

    Article  CAS  Google Scholar 

  3. Bouropoulos N, Tsiaoussis I, Poulopoulos P, Roditis P, Baskoutas S (2008) Mater Lett 62:3533–3535

    Article  CAS  Google Scholar 

  4. Salavati-Niasari M, Loghman-Estarki MR, Davar F (2008) Chem Eng J 145:346–350

    Article  CAS  Google Scholar 

  5. Gao PX, Wang ZL (2003) J Am Chem Soc 125(11299):11305

    Google Scholar 

  6. Baruah S, Dutta JD (2009) Sci Technol Adv Mater 10:013001–0130019

    Article  Google Scholar 

  7. Wang ZL (2004) Mater Today 7(26):33

    Google Scholar 

  8. He G, Cai JH, Ni G (2008) Mater Chem Phys 110(110):114

    Google Scholar 

  9. Salavati-Niasari M, Davar F, Farhadi M (2009) J Sol-Gel Sci Technol 51(48):52

    Google Scholar 

  10. Pechini MP (1967) Patent US no. 3 330 697

  11. Sakka S, Kozuka H (2005) Handbook of sol–gel science and technology processing, characterization and applications. Kluwer, Dordrecht, pp 60–76

    Google Scholar 

  12. Salavati-Niasari M, Davar F, Loghman-Estarki MR (2010) J Alloys Compd 494(199):204

    Google Scholar 

  13. Wu L, Wu Y, Lü W (2005) Phys E 28(76):82

    Google Scholar 

  14. Zhang YC, Wu X, Hu XY, Guo R (2005) J Cryst Growth 280(250):254

    Google Scholar 

  15. Ristić M, Musić S, Ivanda M, Popovíć S (2005) J Alloys Compd 397:L1–L4

    Article  Google Scholar 

  16. Li J, Srinivasan S, He GN, Kang JY, Wu ST, Ponce FA (2008) J Cryst Growth 310(599):603

    Google Scholar 

  17. Lee J, Easteal AJ, Pal U, Bhattacharyya D (2009) Curr Appl Phys 9(792):796

    Google Scholar 

  18. Shoja Razavi R, Loghman Estarki MR et al (2010) Curr Nano Sci 7:807–812

    Article  Google Scholar 

  19. Rani S, Suri P, Shishodia PK, Mehra RM (2008) Sol Energy Mat Sol Cells 92(1639):1645

    Google Scholar 

  20. Chezhina NV, Korolev DA (2011) Open Fuel Cells J 4(7):15

    Google Scholar 

  21. Shi M, Xu Y, Liu A, Liu N, Wang C, Majewski P, Aldinger F (2009) Mater Chem Phys 114(43):46

    Google Scholar 

  22. Liang S, Sheng H, Liu Y, Hio Z, Lu Y, Chen H (2001) J Cryst Growth 225:110

    Article  CAS  Google Scholar 

  23. Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I, Koumoto K (2002) Adv Mater 14:418

    Article  CAS  Google Scholar 

  24. Sánchez C, Doria J, Paucar C, Hernandez M, Squera AM, Rodríguez JE, Gómez A, Baca E, Morán O (2010) Phys B 405:3679–3684

    Article  Google Scholar 

  25. Singh KA, Pathak LC, Roy SK (2007) Ceram Inter 33(1463):1468

    Google Scholar 

  26. Mondelaers D, Vanhoyland G, Van den Rul H, Haen JD, Van Bael MK, Mullens J, Van Poucke LC (2002) Mater Res Bull 37(901):914

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Malek Ashtar University of Technology, department of material engineering, for the financial support. One of the authors would like thanks Dr. F. Davar for her excellent comments for improving quality of this manuscript. In final, the corresponding author would like to present this work to his daughter Sara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Loghman-Estarki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhadi-Khouzani, M., Fereshteh, Z., Loghman-Estarki, M.R. et al. Different morphologies of ZnO nanostructures via polymeric complex sol–gel method: synthesis and characterization. J Sol-Gel Sci Technol 64, 193–199 (2012). https://doi.org/10.1007/s10971-012-2847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-012-2847-y

Keywords

Navigation