Skip to main content
Log in

Influence of SILAR deposition cycles in CdS quantum dot-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The cadmium sulfide (CdS) quantum dots (QDs) were deposited on the commercial (Degussa-P25) TiO2 nanostructures by successive ionic layer adsorption and reaction (SILAR) method. Three types of films were prepared with CdS 9, 12 and 15 cycles. The PXRD, UV–Vis–NIR absorption and J–V measurements were taken for the CdS QDs deposited for 9, 12 and 15 cycles and the results were compared. The CdS sensitized electrode prepared using 12 cycles of SILAR produces an efficiency of 1.45% on using a liquid (I/I3) electrolyte and platinum counter electrode under the illumination of 100 mW/cm2 which shows the best power conversion efficiency compared with CdS 9 and 15 cycles respectively. Total charge collection efficiency was increased upto 12 deposition cycles and it started to decrease beyond 12 cycles. This might be due to the changes in the photo adsorption behavior of CdS QD as a function of deposition cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. O’Regan, M. Gratzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. J.M. Luther, M.C. Beard, Q. Song, M. Law, R.J. Ellingson, A.J. Nozik, Nano Lett. 7, 1779 (2007)

    Article  CAS  Google Scholar 

  3. M.C. Beard, J. Phys. Chem. Lett. 2, 1282 (2011)

    Article  CAS  Google Scholar 

  4. Y. Yang, W. Rodríguez-Co, T. Rdoba, Lian, Nano Lett. 12, 4235 (2012)

    Article  CAS  Google Scholar 

  5. L. Wei, F. Li, S. Hu, H. Li, B. Chi, J. Pu, L. Jian, J. Am. Ceram. Soc. 98, 3173 (2015)

    Article  CAS  Google Scholar 

  6. T. Toyoda, Q. Shen, J. Phys. Chem. Lett. 3, 1885 (2012)

    Article  CAS  Google Scholar 

  7. K. Fan, M. Liu, T. Peng, L. Ma, K. Dai, Renew. Energy 35, 555–561 (2010)

    Article  CAS  Google Scholar 

  8. S.K. Dhungel, J.G. Park, Renew. Energy 35, 2776–2780 (2010)

    Article  CAS  Google Scholar 

  9. M. Atif, W.A. Farooq, A. Fatehmulla, M. Aslam, S. Mansoor Ali, Materials 8, 355–367 (2015)

    Article  CAS  Google Scholar 

  10. H. Choi, P.V. Kamat, J. Phys. Chem. Lett. 4, 3983 (2013)

    Article  CAS  Google Scholar 

  11. Y. Hu, B. Wang, J. Zhang, T. Wang, R. Liu, J. Zhang, X. Wang, H. Wang, Nanoscale Res. Lett. 8, 1 (2013)

    Article  Google Scholar 

  12. J. Yang, L. Pan, G. Zhu, X. Liu, H. Sun, Z. Sun, J. Electroanal. Chem. 677, 101 (2012)

    Article  Google Scholar 

  13. R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin, G. Cao, J. Phys. Chem. Lett. C 117, 26948 (2013)

    Article  CAS  Google Scholar 

  14. H. Lee, M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Gratzel, Md.K. Nazeeruddin, Nano Lett. 9, 4221 (2009)

    Article  CAS  Google Scholar 

  15. X. Song, M. Wang, H. Zhang, J. Deng, Z. Yang, C. Ran, X. Yao, Electrochim. Acta 108, 449 (2013)

    Article  CAS  Google Scholar 

  16. K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C. Barry Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Nano Lett. 7, 1793 (2007)

    Article  CAS  Google Scholar 

  17. E. Talgorn, M.A. de Vries, L.D.A. Siebbeles, A.J. Houtepen, ACS Nano 5, 3552 (2011)

    Article  CAS  Google Scholar 

  18. C. Ratanatawanate, C. Xiong, K.J. Balkus, ACS Nano 2, 1682 (2008)

    Article  CAS  Google Scholar 

  19. P.R. Brown, R.R. Lunt, N. Zhao, T.P. Osedach, D.D. Wanger, L.-Y. Chang, M.G. Bawendi, V. Bulovi, Nano Lett. 11, 2955 (2011)

    Article  CAS  Google Scholar 

  20. N. Guijarro, T. Lana-Villarreal, T. Lutz, S.A. Haque, R. Gómez, J. Phys. Chem. Lett. 3, 3367 (2012)

    Article  CAS  Google Scholar 

  21. S. Mostafa Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, S. Afr. J. Chem. 70, 44–48 (2017)

    Google Scholar 

  22. M. Ramezani, A. Sobhani-Nasab, A. Davoodi, J. Mater. Sci.: Mater. Electron. 26, 5440–5445 (2015)

    CAS  Google Scholar 

  23. A. Sobhani-Nasab, M. Rangraz-Jeddy, A. Avanes, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 9552–9560 (2015)

    CAS  Google Scholar 

  24. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, A. Yeganeh, S. Faal, Bagheri, Adv. Powder Technol. 27, 2066 (2016)

    Article  CAS  Google Scholar 

  25. H.M. Pathan, C.D. Lokhande, Bull. Mater. Sci. 27, 85–111 (2004)

    Article  CAS  Google Scholar 

  26. V. Senthamilselvi, K. Saravanakumar, N. Jabena Begum, R. Anandhi, A.T. Ravichandran, B. Sakthivel, K. Ravichandran, J. Mater. Sci.: Mater. Electron. 23, 302 (2012)

    CAS  Google Scholar 

  27. G. Zhu, L. Pan, T. Xu, Z. Sun, ACS Appl. Mater. Interfaces 3, 3146 (2011)

    Article  CAS  Google Scholar 

  28. Y. Choi, M. Seol, W. Kim, K. Yong, J. Phys. Chem. 118, 5664 (2014)

    CAS  Google Scholar 

  29. S. Corer, G. Hodes, J. Phys. Chem. 98, 5338 (1994)

    Article  Google Scholar 

  30. S. Mathews, P.S. Mukerjeeb, K.P. Vijayakumar, Thin Solid Films 254, 278–284 (1995)

    Article  Google Scholar 

  31. K. Ravichandran, P. Philominathan, Appl. Surf. Sci. 255, 5736 (2009)

    Article  CAS  Google Scholar 

  32. A. Hartley, S.J.C. Irvine, J. Mater. Sci.: Mater. Electron. 11, 569 (2000)

    CAS  Google Scholar 

  33. G. Sasikala, R. Dhanasekaran, C. Subramanian, Thin Solid Films 302, 71–76 (1997)

    Article  CAS  Google Scholar 

  34. G.S. Paul, J.H. Kim, M.-S. Kim, K. Do, J. Ko, J.-S. Yu, ACS Appl. Mater. Interfaces 4, 375–381 (2012)

    Article  CAS  Google Scholar 

  35. Md.A. Hossain, J.R. Jennings, C. Shen, J.H. Pan, Z.Y. Koh, N. Mathews, Q. Wang, J. Mater. Chem. 22, 16235–16242 (2012)

    Article  CAS  Google Scholar 

  36. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, R. Balasundaraprabhu, S. Agilan, J. Mater. Sci.: Mater. Electron. 24, 3014–3020 (2013)

    CAS  Google Scholar 

  37. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, J. Mater. Sci.: Mater. Electron. 25, 2724–2729 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Science and Technology (DST), Govt. of India under research Grant No. DST/TM/SERI/2k12/40(G) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramasamy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veerathangam, K., Senthil Pandian, M. & Ramasamy, P. Influence of SILAR deposition cycles in CdS quantum dot-sensitized solar cells. J Mater Sci: Mater Electron 29, 7318–7324 (2018). https://doi.org/10.1007/s10854-018-8721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8721-0

Navigation