Skip to main content
Log in

Photocatalytic activity and photoluminescence properties of TiO2, In2O3, TiO2/In2O3 thin films multilayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study evaluated the effect of crystallization temperature (300, 500 and 700 °C) on the photocatalytic and photoluminescent properties of the multilayer thin films of TiO2, In2O3 and TiO2/In2O3 which were prepared by the Complex Polymerization Method (CPM) and deposited on substrates of Si (100) by the spin coating method. The results of X-ray diffraction (XRD) revealed that there was no chemical interaction between the oxides (TiO2/In2O3) in crystalline films. The morphology was observed by atomic force microscopy (AFM) with a mean grain size of 15–35 nm. The result showed that the photocatalytic property is significantly increased by increasing the crystallization temperature. This is due to the agitation of the molecules which facilitates the transfer of charge between the electron and the catalyst bore. UV–vis light absorption spectra indicated that the addition of In2O3 in TiO2 films is an effective way of increasing the uptake of TiO2 in the visible region up to ~ 600 nm for photocatalytic applications, it was also possible to observe that these films could be easily Recycled for reuse. The samples were also characterized by photoluminescence, where it was possible to observe that the reduction of the PL intensity increased the photocatalytic activity of the thin films, with the increase of the crystallization temperature. In addition, the method used in this study is simple and economical compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. I. Stambolova, V. Blaskov, N. Kaneva, M. Shipochka, S. Vassilev, O. Dimitrov, A. Eliyas, Effect of post-synthesis acid activation of TiO2 nanofilms on the photocatalytic efficiency under visible light. J. Phys. Conf. Ser. 558, 012055 (2014)

    Article  Google Scholar 

  2. S.A. Khayyat, R. Selvin, L.S. Roselin, A. Umar, Photocatalytic oxidation of phenolic pollutants and hydrophobic organic compounds in industrial wastewater using modified nonosize titanium silicate-1 thin film technology. J. Nanosci. Nanotechnol. 14, 10–16 (2014)

    Google Scholar 

  3. S. Niyomkarn, T. Puangpetch, S. Chavadej, Mesoporous-assembled In2O3–TiO2 mixed oxide photocatalysts for efficient degradation of azo dye contaminant in aqueous solution. Mater. Sci. Semicond. Process. 25, 112–122 (2014)

    Article  Google Scholar 

  4. L.G.J. De Haart, A.J. De Vries, G. Blasse, On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells. Solid State Chem. 59, 291 (1985)

    Article  Google Scholar 

  5. T. Yasuda, K. Nishikawa, S. Furukawa, Structural colors from TiO2/SiO2 multilayer flakes prepared by sol–gel process. Dyes Pigm. 92, 1122–1125 (2012)

    Article  Google Scholar 

  6. A.R. Hernandez-Martinez, M. Estevez, S. Vargas, F. Quintanilla, R.J. Rodriguez, Natural pigment based dye sensitized solar cells. Appl. Res. Technol. 10, 38–47 (2012)

    Google Scholar 

  7. A.A. Annenkova, M.V. Korzhikb, P. Lecoq, Lead tungstate scintillation material. Nucl. Instrum. Methods Phys. Res. Sect. A 490, 30–50 (2002)

    Article  Google Scholar 

  8. J. Kim, S. Do Hanb, H.D. Leea, J.S. Wanga, I. Singhc, S.V. Kornilov, Fabrication and characterization of humidity sensor based on (Li2MoO4) x (CaMoO4)1 – x system. Mater. Sci. Eng. B. 116, 226–230 (2005)

    Article  Google Scholar 

  9. A. Apostolopoulou, D. Sygkridou, A. Rapsomanikis, A.N. Kalarakis, E. Stathatos, Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2–In2O3 electron transport layer. Solar Energy Mater. Solar Cells. 166, 100–107 (2017)

  10. Y. Chen, X. Zhou, X. Zhao, X. He, X. Gu, Crystallite structure, surface morphology and optical properties of In2O3–TiO2 composite thin films by sol–gel method. Mater. Sci. Eng. B. 151, 179–186 (2008)

    Article  Google Scholar 

  11. C. Ramana, R. Vemuri, I. Fernandez, A. Campbell, Size-effects on the optical properties of zirconium oxide thin films. Appl. Phys. Lett. 95, 231905 (1–3) (2009)

    Article  Google Scholar 

  12. D. Tahir, S.K. Oh, H.J. Kang, S. Tougaard, Composition dependence of dielectric and optical properties of Hf-Zr-silicate thin films grown on Si (100) by atomic layer deposition. Thin Solid Films. 616, 425–430 (2016)

    Article  Google Scholar 

  13. A. Ortiz, J. Alonso, E. Haro-Poniatowski, Spray deposition and characterization of zirconium-oxide thin films. J. Electron. Mater. 34, 150–155 (2005)

    Article  Google Scholar 

  14. F.E. Ghodsi, F.Z. Tepehan, G.G. Tepehan, Electrochromic properties of heat-treated thin films of CeO2–TiO2–ZrO2 prepared by sol–gel route. Sol. Energy Mater. Sol. Cells. 92, 234–239 (2008)

    Article  Google Scholar 

  15. F.M. Pontes, E. Longo, J.H.G. Rangel, M.I. Bernardi, E.R. Leite, J.A. Varela, Ba1-xSrxTiO3 thin films by polymeric precursor method. Mater. Letter. 43(5–6), 249 (2000)

    Article  Google Scholar 

  16. M.B. Sarkar, A. Mondal, B. Choudhuri, B.K. Mahajan, S. Chakrabartty, C. Ngangbam, Enlarged broad band photodetection using Indium doped TiO2 alloy thin Film. J. Alloy. Compd. 615, 440–445 (2014)

    Article  Google Scholar 

  17. W. Chen, C. Takai, H.R. Khosroshahi, M. Fuji, T. Shirai, SiO2/TiO2 double-shell hollow particles: fabrication and UV–Vis spectrum characterization. Adv. Powder Technol. 27, 812–818 (2016)

    Article  Google Scholar 

  18. A.K. Batra, A.K. Chilvery, P. Guggilla, M. Aggarwal, J.R. Currie micro- and nano-structured metal oxides based chemical sensors: an overview. J. Nanosci. Nanotechnol. 14, 2065–2085 (2014)

    Article  Google Scholar 

  19. Y. Zhang, J. Yu, K. Sun, Y. Zhu, Y. Bu, Z. Chen, Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light. Mater. Res. Bull. 53, 251–256 (2014)

    Article  Google Scholar 

  20. A. Qurashi, J.A. Rather, T. Yamazakid, M. Sohail, K.D. Wael, B. Merzougui, A.S. Hakeem, Swift electrochemical detection of paraben an endocrinedisruptor by In2O3 nanobricks. Sens. Actuat. B. 221, 167–171 (2015)

    Article  Google Scholar 

  21. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn J. Appl. Phys. 44, 8269–8285 (2005)

    Article  Google Scholar 

  22. B.M. Reddy, I. Ganesh, A. Khan, Preparation and characterization of In2O3-TiO2 and V2O5/In2O3-TiO2 composite oxides for catalytic applications. Appl. Catal. A. 248, 169–180 (2003)

    Article  Google Scholar 

  23. S.K. Poznyak, D.V. Talapin, A.I. Kul, Optical properties and charge transport in nanocrystalline TiO2 –In2O3 composite films. Thin Solid Films. 405, 35–41 (2002)

    Article  Google Scholar 

  24. P. Scherrer, Determination of the size and internal structure of colloidal particles using X-rays, Nachr. Ges. Wiss. Göttingen. 26, 98–100 (1918)

    Google Scholar 

  25. C. Li, T. Ming, J. Wang, J. Wang, J.C. Yu, S.Yu, Ultrasonic aerosol spray-assisted preparation of TiO2/In2O3 composite for visible-light-driven photocatalysis. J. Catal. 310, 84–90 (2014)

    Article  Google Scholar 

  26. M. Zhou, J. Yu, S. Liu, P. Zhai, L. Jiang, Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method. J. Hazard. Mater. 154, 1141–1148 (2008)

    Article  Google Scholar 

  27. P.F.S. Pereira, I.C. Nogueira, E. Longo, E.J. Nassar, I.L.V. Rosa, L.S. Cavalcante, Rietveld refinement and optical properties of SrWO4:Eu3 + powders prepared by the non-hydrolytic sol-gel method. J. Rare Earths. 33, 113 (2015)

    Article  Google Scholar 

  28. Y. Chen, X. Zhou, X. Zha, X. He, X. Gu, Crystallite structure, surface morphology and optical properties of In2O3–TiO2 composite thin films by sol–gel method. Mater. Sci. Eng. B. 151, 179–186 (2008)

    Article  Google Scholar 

  29. K. Boubaker, A physical explanation to the controversial Urbach tailing universality. Eur. Phys. J. Plus. 126, 1–4 (2011)

    Article  Google Scholar 

  30. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  31. S.S. Chiad, W.A. Jabbar, N.F. Habubi, Effects of annealing on the electronic transitions of ZnS thin films. J. Arkansas Acad. Sci., 65, (2011)

  32. H.S. Kim, H.G. Na, J.C. Yang, C. Lee, H.W. Kim, Synthesis, structure, photoluminescence, and raman spectrum of indium oxide nanowires. Acta Phys. Pol. A. 119, 143–145 (2011)

    Article  Google Scholar 

  33. R. Desai, S.K. Gupta, S. Mishra, P.K. JHA, A. Pratap, The synthesis of Tio2 nanoparticles by wet-chemical method and their photoluminescence, thermal and vibrational characterizations: effect of growth condition. Int. J. Nanosci. 10, 1249–1256 (2011)

    Article  Google Scholar 

  34. J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, P. Mulvaney, Luminescence and amplified stimulated emission in CdSe–ZnS-nanocrystal- doped TiO2 and ZrO2 waveguides. Adv. Funct. Mater. 17, 1654–1662 (2007)

    Article  Google Scholar 

  35. S. Husain, L.A. Alkhtaby, E. Giorgetti, A. Zoppi, M.M. Miranda, Investigation of the role of iron doping on the structural, optical and photoluminescence properties of sol–gel derived TiO2 nanoparticles. J. Lumin. 172, 258–263 (2016)

    Article  Google Scholar 

  36. P.R. de Lucena, F.M. Pontes, C.D. Pinheiro, E. Longo, P.S. Pizani, S. A.G. L.ázaro, Souza, I. M. G. dos Santos (2004), Fotoluminescência em materiais com desordem estrutural. Cerâmica. 50 314

    Article  Google Scholar 

  37. Z. Huang, C. Chai, X. Tan, A. W., Yuan, Z., Zhou, Photoluminescence properties of the In2O3 octahedrons synthesized by carbothermal reduction method. Mater. Lett. 61, 5137–5140 (2007)

  38. P. Wu, Q. Li, C.X. Zhao, D.L. Zhang, L.F. Chi, T. Xiao, Appl. Surf. Sci. 255, 3201e3204 (2008)

    Google Scholar 

  39. D.S. Dalavi, R.S. Devan, R.S. Patil, Y. Ma, P.S. Patil, Electrochromic performance of sol–gel deposited NiO thin film. Mater. Lett. 90, 60–63 (2013)

    Article  Google Scholar 

  40. F. Petronella, S. Rtimi, R. Comparelli, R. Sanjines, C. Pulgarin, M.L. Curri, J. Kiwi, Uniform TiO2/In2O3surface films effective in bacterial inactivationunder visible light. J. Photochem. Photobiol. A. 279, 1–7 (2014)

    Article  Google Scholar 

  41. P.K. Sanoop, S. Anas, S. Ananthakumar, V. Gunasekar, R. Saravanan, V. Ponnusami, Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation. Arab. J. Chem. 9, S1618–S1626 (2016)

    Article  Google Scholar 

  42. J. Sin, S. Lam, K. Lee, A. Mohamed, Preparation and photocatalytic properties of visible light-driven samarium-doped ZnO nanorods. Ceram. Int. 39, 5833–5843 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Brazilian research financing institutions: CAPES/PROCAD 2013/2998/2014, CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. P. Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, L.M.P., Tavares, M.T.S., Andrade Neto, N.F. et al. Photocatalytic activity and photoluminescence properties of TiO2, In2O3, TiO2/In2O3 thin films multilayer. J Mater Sci: Mater Electron 29, 6530–6542 (2018). https://doi.org/10.1007/s10854-018-8635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8635-x

Navigation