Skip to main content

Advertisement

Log in

Microstructures and energy storage properties of BSN ceramics with crystallizable glass addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Barium strontium niobate (BSN) ceramics with different amounts of BaO–SrO–Nb2O5–Al2O3–B2O3–SiO2 (BSNABS) glass additive were prepared via the conventional solid-state sintering method, and their sintering behavior, microstructure, electric properties and energy storage properties were systematically investigated. It was found that the addition of BSNABS glass could significantly lower the sintering temperature, refine the grain size and enhance the breakdown strength of ceramics. Meanwhile, the reduction of the dielectric constant for BSN ceramics was slowed down due to the precipitation of ferroelectric phase BSN and BaAl2Si2O8 from the glass during the sintering process. In addition, impedance spectra results showed that high grain boundary resistance was the main reason of the enhancement for breakdown strength. The sample with 4 wt% glass addition possessed the highest breakdown strength of 240 kV/cm, the maximum energy density of 0.982 J/cm3 and the energy efficiency of 76.5%, which may be used as a suitable candidate ceramic material for high energy storage density capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.R. Love, Energy storage in ceramic dielectrics. J. Am. Ceram. Soc. 73, 323–328 (1990)

    Article  CAS  Google Scholar 

  2. W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36, 593–600 (2016)

    Article  CAS  Google Scholar 

  3. I. Burn, D.M. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7, 339–343 (1972)

    Article  CAS  Google Scholar 

  4. D.G. Zheng, R.Z. Zuo, Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J. Eur. Ceram. Soc. 37, 413–418 (2017)

    Article  CAS  Google Scholar 

  5. X. Huang, P. Jiang, Core–shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27, 546–554 (2015)

    Article  CAS  Google Scholar 

  6. Z.H. Yao, Z. Song, H. Hao, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29 1601727 (2017)

    Article  Google Scholar 

  7. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)

    Article  CAS  Google Scholar 

  8. Q. Li, L. Chen, M.R. Gadinski, S.H. Zhang, G.Z. Zhang, H.U. Li, E. Iagodkine, A. Haque, L.Q. Chen, T.N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites., Nature 523, 576–579 (2015)

    Article  CAS  Google Scholar 

  9. Z.T. Yang, H.L. Du, S.B. Qu, Y.D. Hou, H. Ma, J.F. Wang, J. Wang, X.Y. Wei, Z. Xu, Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A 4, 13778–13785 (2016)

    Article  CAS  Google Scholar 

  10. T. Wu, Y. Pu, K. Chen, Dielectric relaxation behavior and energy storage properties in Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with glass additives. Ceram. Int. 39, 6787–6793 (2013)

    Article  CAS  Google Scholar 

  11. D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, High energy density, high temperature capacitors utilizing Mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95, 1348–1355 (2012)

    Article  CAS  Google Scholar 

  12. Y. Yang, J. Song, G.H. Chen, C.L. Yuan, X.Q. Li, C.R. Zhou, Effect of crystallization temperature on the dielectric property and energy density of SrO–BaO–Nb2O6–B2O3 glass–ceramics. J. Non-Cryst. Solids 410, 96–99 (2015)

    Article  CAS  Google Scholar 

  13. J. Zheng, G.H. Chen, C.L. Yuan, C.R. Zhou, X. Chen, Q. Feng, M. Li, Dielectric characterization and energy-storage performance of lead-free niobate glass–ceramics added with La2O3. Ceram. Int. 42, 1827–1832 (2016)

    Article  CAS  Google Scholar 

  14. Y.H. Huang, Y.J. Wu, W.J. Qiu, J. Li, X.M. Chen, Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc. 35, 1469–1476 (2015)

    Article  CAS  Google Scholar 

  15. M. Said, T.S. Velayutham, W.C. Gan, W.H. Abd Majid, The structural and electrical properties of SrxBa(1–x)Nb2O6 (SBN) ceramic with varied composition. Ceram. Int. 41, 7119–7124 (2015)

    Article  CAS  Google Scholar 

  16. Y.Q. Qu, A.D. Li, Q.Y. Shao, Y.F. Tang, D. Wu, C.L. Mak, K.H. Wong, N.B. Ming, Structure and electrical properties of strontium barium niobate ceramics. Mater. Res. Bull. 37, 503–513 (2002)

    Article  CAS  Google Scholar 

  17. T.S. Velayutham, N.I.F. Salim, W.C. Gan, W.H. Abd Majid, Effect of cerium addition on the microstructure, electrical and relaxor behavior of Sr0.5Ba0.5Nb2O6 ceramics. J.Alloys Compd. 666, 334–340 (2016)

    Article  CAS  Google Scholar 

  18. Q.M. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Improved energy storage density in barium strontium titanate by addition of BaO–SiO2–B2O3 glass. J. Am. Ceram. Soc. 92, 1871–1873 (2009)

    Article  CAS  Google Scholar 

  19. A. Young, G. Hilmas, S.C. Zhang, R.W. Schwartz, Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90, 1504–1510 (2007)

    Article  CAS  Google Scholar 

  20. D. Zhang, T.W. Button, V.O. Sherman, A.K. Tagantsev, T. Price, D. Iddles, Effects of glass additions on the microstructure and dielectric properties of barium strontium titanate (BST) ceramics. J. Eur. Ceram. Soc. 30, 407–412 (2010)

    Article  CAS  Google Scholar 

  21. G.H. Chen, Z.C. Li, T. Yang, Y. Yang, Enhanced energy storage properties of strontium barium niobate ceramics by glass addition. J. Mater. Sci.: Mater. Electron. 27, 12820–12825 (2016)

    CAS  Google Scholar 

  22. G.H. Chen, J. Zheng, Z.C. Li, J.W. Xu, Q.N. Li, C.R. Zhou, C.L. Yuan, Q. Feng, Microstructures and dielectric properties of Sr0.6Ba0.4Nb2O6 ceramics with BaCu (B2O5) addition for energy storage. J. Mater. Sci.: Mater. Electron. 27, 2645–2651 (2016)

    CAS  Google Scholar 

  23. X.F. Su, M. Tomozawa, J.K. Nelson, D.B. Chrisey, Effect of crystallizable glass addition on sintering and dielectric behaviors of barium titanate ceramics. J. Mater. Sci.: Mater. Electron. 24, 2135–2140 (2013)

    CAS  Google Scholar 

  24. T. Wu, Y.P. Pu, T.T. Zong, P. Gao, Microstructures and dielectric properties of Ba0.4Sr0.6TiO3 ceramics with BaO–TiO2–SiO2 glass–ceramics addition. J. Alloys Compd. 584, 461–465 (2014)

    Article  CAS  Google Scholar 

  25. S.M. Xiu, S. Xiao, W.Q. Zhang, S.X. Xue, B. Shen, J.W. Zhai, Effect of rare-earth additions on the structure and dielectric energy storage properties of BaxSr1–xTiO3-based barium boronaluminosilicate glass-ceramics. J. Alloys Compd. 670, 217–221 (2016)

    Article  CAS  Google Scholar 

  26. S.M. Xiu, B. Shen, J.W. Zhai, The effects of MnO2 addition on the structure and dielectric properties of the strontium barium niobate glass–ceramics. Mater. Res. Bull. 95, 349–353 (2017)

    Article  CAS  Google Scholar 

  27. H.X. Tang, H.A. Sodano, Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 13, 1373–1379 (2013)

    Article  CAS  Google Scholar 

  28. Z. Song, H.X. Liu, S.J. Zhang, Z.J. Wang, Y.T. Shi, H. Hao, M.H. Cao, Z.H. Yao, Z.Y. Yu, Effect of grain size on the energy storage properties of (Ba0.4Sr0.6) TiO3 paraelectric ceramics. J. Eur. Ceram. Soc. 34, 1209–1217 (2014)

    Article  CAS  Google Scholar 

  29. J.D. Zang, M. Li, D.C. Sinclair, T.F. Wook, Impedance spectroscopy of (Bi1/2Na1/2) TiO3–BaTiO3 based high-temperature dielectrics. J. Am. Ceram. Soc. 97, 1–7 (2014)

    Article  Google Scholar 

  30. L. Zhang, H. Hao, H.X. Liu, Z. Song, Z.H. Yao, J. Xie, H.X. Liu, X.Y. Zhu, Q. Xu, X.C. Huang, M.H. Cao, Effect of HfO2 addition as intergranular grains on the energy storage behavior of Ca0.6Sr0.4TiO3 ceramics. J. Eur. Ceram. Soc. 36, 3157–3163 (2016)

    Article  CAS  Google Scholar 

  31. H.B. Yang, F. Yan, G. Zhang, Y. Lin, F. Wang, Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3–Al2O3–SiO2 glass–ceramics addition for enhanced energy storage. J. Alloys Compd. 720, 116–125 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Project of Technology Promotion and Industrialization for key basic Materials in China (No. 2017YFB0310200), the National Nature Science Foundation of China (Nos. 51672310 and 51502349), the Education Department of Guangxi government (No. C77KYO00CL01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anxian Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Han, L., Liu, T. et al. Microstructures and energy storage properties of BSN ceramics with crystallizable glass addition. J Mater Sci: Mater Electron 29, 5934–5943 (2018). https://doi.org/10.1007/s10854-018-8566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8566-6

Navigation