Skip to main content
Log in

Structural and electrical properties of Gd-doped BiFeO3:BaTiO3 (3:2) multiferroic ceramic materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gadolinium doped BiFeO3:BaTiO3 (3:2) polycrystalline multiferroic ceramics have been prepared by high-temperature solid state reaction technique. X-ray diffraction (XRD) analysis at room temperature of the prepared materials confirmed the formation of the compounds with rhombohedral crystal structure. The average particle size of as prepared samples have been found in the range of 35 nm to 55 nm for different doping concentrations. The average grain size of as prepared samples are less than 100 nm which is confirmed from SEM study. The SEM of annealed compounds showed the uniform distribution of grains and the formation of dense ceramic with average grain size in the order of 4 µm. Dielectric studies of the materials reveals that the dielectric constant (\({\varepsilon _r}\)) and tangent loss (tan δ) decreases with doping concentrations at room temperature. The variation of \({\varepsilon _r}\) and tan δ with temperature was explained on the basis of Maxwell–Wagner mechanism. The values of grain resistance (\({R_b}\)) and grain capacitance (Cb) were obtained from Nyquist plots for the different doping concentrations at 300 °C. The activation energy (\({E_a}\)) was calculated from the curve of frequency dependent ac conductivity (\({\sigma _{ac}}\)) within the range 0.19 eV to 0.45 eV. The remnant polarization of the samples (0.53 µC/cm2) was measured from polarization versus electric field (P–E) hysteresis curves. The ferromagnetic behaviour of the Gd-doped BiFeO3:BaTiO3 (3:2) sample has been studied by SQUID for the lowest doping concentration. The value of remnant magnetization was found 0.0235 emu/g at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N. Cai, J. Zhai, C.W. Nan, Y. Lin, Phys. Rev. B 68, 224103 (2003)

    Article  Google Scholar 

  2. P.E. Janolin, N.A. Pertsev, D. Shichuga, L. Bellaiche, Phys. Rev. B 85, 140401 (2012)

    Article  Google Scholar 

  3. J.M. Caicedo, J.A. Zapata, M.E. Gómez, P. Prieto, J. Appl. Phys. 103, 07E306 (2008)

    Article  Google Scholar 

  4. I. Calisir, A.A. Amirov, A.K. Kleppe, D.A. Hall, J. Mater. Chem. A (2018). https://doi.org/10.1039/c7ta09497c

  5. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  6. Y. Li, N. Jiang, K. Ho Lam, Y. Guo, Q. Zheng, Q. Li, W. Zhou, Y. Wan, D. Lin, J. Am. Ceram. Soc. 97, 3602 (2014)

    Article  Google Scholar 

  7. B. Kaur, L. Singh, V.A. Reddy, D.Y. Jeong, N. Dabra, J.S. Hundal, Int. J. Electrochem. Sci. 11, 4120–4135 (2016)

    Article  Google Scholar 

  8. V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628–1630 (2002)

    Article  Google Scholar 

  9. G.S. Lotey, N.K. Verma, J. Nanopart. Res. 1, 742 (2012)

    Article  Google Scholar 

  10. A.T. Mulder, N.A. Benedek, J.M. Rondinelli, C.J. Fennie, Adv. Funct. Mater. 23(38), 4810–4820 (2013)

  11. N.A. Benedek, C.J. Fennie, PRL 106, 107204 (2011)

    Article  Google Scholar 

  12. S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloys Compounds 750, 507–514 (2018)

    Article  Google Scholar 

  13. B. Sun, Y. Liu, W. Zha, P. Chen, JSC Adv. 5, 13513–13518 (2015)

  14. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, J. Appl. Phys. 103, 024105 (2008)

    Article  Google Scholar 

  15. A. Bai, S. Zhao, J. Chen, J. Nanomaterials (2014). https://doi.org/10.1155/2014/509408

  16. P. Lin, S. Cui, X. Zeng, H. Huang, S. Ke, J. Alloys Compd. 600, 118–124 (2014)

    Article  Google Scholar 

  17. A. Kumar, K.L. Yadav, Phys. B 405, 4650–4654 (2010)

    Article  Google Scholar 

  18. S. Hussaina, S.K. Hasanaina, G.H. Jaffaria, N.Z. Alib, M. Siddiquec, S.I. Shahd, J. Alloys Compd, S0925-8388(14) 02449–9 (2014)

  19. B.K. Barick, R.N.P. Choudhary, D.K. Pradhan, Mater. Chem. Phys. 132, 1007–1014 (2012)

    Article  Google Scholar 

  20. H. Zhanga, W. Joa, K. Wanga, K.G. Webber, Ceram. Int. 40, 4759–4765 (2014)

    Article  Google Scholar 

  21. L. Cao, C. Zhou, J. Xu, Q. Li, C. Yuan, G. Chen, Phys. Status Solidi A 213(1), 52–59 (2016)

    Article  Google Scholar 

  22. C. Li, B. Yang, S.T. Zhang, R. Zhang, Y. Sun, H.J. Zhang, W.W. Cao, J. Am. Ceram. Soc. 97(3), 816–825 (2014)

    Article  Google Scholar 

  23. T.-H. Wang, C.-S. Tu, H.-Y. Chen, Y. Ding, T.C. Lin, Y.-D. Yao, V.H. Schmidt, K.-T. Wu1. J. Appl. Phys. 109, 044101 (2011)

    Article  Google Scholar 

  24. D. Wanga, Z. Fanb, W. Lic, D. Zhou, A. Feteirad, G. Wanga, S. Murakamia, S. Sun, Q. Zhao, X. Tan, I.M. Reaney, Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b01099

    Google Scholar 

  25. F. Prihor, A. Ianculescu, L. Mitoseriu, P. Postolache, L. Curecheriu, N. Dragan, D. Crisan, Ferroelectrics 391, 76–82 (2009)

    Article  Google Scholar 

  26. C.B. Sawyer, C.H. Tower, Phys. Rev. 35, 269 (1930)

    Article  Google Scholar 

  27. R. Raia, I. Bdikina, M.A. Valenteb, A.L. Kholkina, Materials Chem Phys. 119, 539–545 (2010)

    Article  Google Scholar 

  28. S. Sharma, V. Singh, R.K. Kotnala, R. Ranjan, R.K. Dwivedi, J. Alloys and Compounds 614, 165–172 (2014)

    Article  Google Scholar 

  29. R. Bartikans, R.M. Eichhorn, Eng. Dielectrics (ASTM), 671 (1983)

  30. E.H. Nicollian, Goetzberger, Bell Syst. Tech. 73, 1055 (1967)

    Article  Google Scholar 

  31. W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952)

    Article  Google Scholar 

  32. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Mater. Res. Express 3, 065017 (2016)

    Article  Google Scholar 

  33. A. Singh, R. Chatterjee, S.K. Mishra, P.S.R. Krishna, S.L. Chaplot, J. Appl. Phys. 111, 014113 (2012)

    Article  Google Scholar 

  34. S. Sahoo, S. Hajra, M. De, K. Mohanta, R.N.P. Choudhary, J. Alloys Compd. 766, 2532 (2018)

    Article  Google Scholar 

  35. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, J. Mater. Sci.: Mater. Electron. 26, 6572–6584 (2015)

    Google Scholar 

  36. F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan, J. Zhu, Appl. Phys. Lett. 89, 242914 (2006)

    Article  Google Scholar 

  37. P. Dey, T.K. Nath, M.N. Goswami, T.K. Kundu, Appl. Phys. Lett. 90, 162510 (2007)

    Article  Google Scholar 

  38. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7(3), 766–772 (2007)

    Article  Google Scholar 

  39. B. Sun, P. Han, W. Zhao, Y. Liu, P. Chen, J. Phys. Chem. C 118, 18814–18819 (2014) (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to IIT, Kharagpur, India and UGC, DAE CSR, Kolkata, India for SEM and SQUID measurements. This exertion is partially supported by DST research project (Memo No.: 296 (Sanc.)/ST/P/S&T/16G-17/2017) from DST, West Bengal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Goswami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, B.S., Goswami, M.N., Jana, P.C. et al. Structural and electrical properties of Gd-doped BiFeO3:BaTiO3 (3:2) multiferroic ceramic materials. J Mater Sci: Mater Electron 30, 2154–2165 (2019). https://doi.org/10.1007/s10854-018-0487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0487-x

Navigation