Skip to main content
Log in

Functional properties of LaxCe1−xO2−δ nanocrystals and their bulk ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structure–property correlations were investigated for LaxCe1−xO2−δ (x = 0.05, 0.15) system (for both nanoparticles and ceramic). The nanoparticles were synthesized by the co-precipitation route and characterized for their structural, catalytic and visible light driven photocatalytic properties. Synthesised LaxCe1−xO2−δ nanopowders depicted phase purity with excellent compositional control as confirmed by various structural characterisation tools. The 15% La3+-doped ceria nanoparticles portrayed superior photocatalytic properties; complete degradation (99%) of the methylene blue dye was observed within 60 min of visible light irradiation under an alkaline medium. High density (> 96%) of the ceramics (sintered at 1580 °C for 2 h) confirmed promising sinterability of the synthesised powders. The ionic conductivities of the LaxCe1−xO2−δ ceramics increased with temperature and frequency owing to enhanced oxygen vacancies in the ceria matrix as a result of doping (of La3+-ions); a maximum conductivity of ~ 8.4 × 10−2 S cm−1 was obtained at 900 °C for the 15% La3+-doped ceria ceramics at 1 MHz frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Trovarelli, C. de Leitenburg, M. Boaro, G. Dolcetti, The utilization of ceria in industrial catalysis. Catal. Today 50, 353–367 (1999)

    Article  Google Scholar 

  2. H. Inaba, H. Tagawa, Ceria-based solid electrolytes. Solid State Ion. 83, 1–16 (1996)

    Article  Google Scholar 

  3. J. Lahaye, S. Boehm, P. Chambrion, P. Ehrburger, Influence of cerium oxide on the formation and oxidation of soot. Combust. Flame 104, 199–207 (1996)

    Article  Google Scholar 

  4. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27, 11691–11697 (2016)

    Google Scholar 

  5. B. Dong, L. Li, Z. Dong, R. Xu, Y. Wu, Fabrication of CeO2 nanorods for enhanced solar photocatalysts. Int. J. Hydrog. Energy 43, 5275–5282 (2018)

    Article  Google Scholar 

  6. A. Trovarelli, M. Boaro, E. Rocchini, C. de Leitenburg, G. Dolcetti, Some recent developments in the characterization of ceria-based catalysts. J. Alloys Compd. 323, 584–591 (2001)

    Article  Google Scholar 

  7. S.J. Hong, A.V. Virkar, Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J. Am. Ceram. Soc. 78, 433–439 (1995)

    Article  Google Scholar 

  8. B. Reddy, M. Katta, L. Thrimurthulu G, Novel nanocrystalline Ce1−xLaxO2−δ (x = 0.2) solid solutions: structural characteristics and catalytic performance. Chem. Mater. 22, 467–475 (2009)

    Article  Google Scholar 

  9. E. Andrievskaya, O. Kornienko, A. Sameljuk, A. Sayir, Phase relation studies in the CeO2–La2O3 system at 1100–1500 °C. J. Eur. Ceram. Soc. 31, 1277–1283 (2011)

    Article  Google Scholar 

  10. M. Guo, J. Lu, Y. Wu, Y. Wang, M. Luo, UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 27, 3872–3877 (2011)

    Article  Google Scholar 

  11. K. Higashi, K. Sonoda, H. Ono, S. Sameshima, Y. Hirata, Synthesis and sintering of rare-earth-doped ceria powder by the oxalate coprecipitation method. J. Mater. Res. 14, 957–967 (1999)

    Article  Google Scholar 

  12. J.S. Bae, W.K. Choo, C.H. Lee, The crystal structure of ionic conductor LaxCe1−xO2−x/2. J. Eur. Ceram. Soc. 24, 1291–1294 (2004)

    Article  Google Scholar 

  13. K. Singh, K. Kumar, S. Srivastava, A. Chowdhury, Effect of rare-earth doping in CeO2 matrix: correlations with structure, catalytic and visible light photocatalytic properties. Ceram. Int. 43, 17041–17047 (2017)

    Google Scholar 

  14. K. Singh, R. Kumar, A. Chowdhury, Synergistic effects of ultrasonication and ethanol washing in controlling the stoichiometry, phase-purity and morphology of rare-earth doped ceria nanoparticles. Ultrason. Sonochem. 36, 182–190 (2017)

    Article  Google Scholar 

  15. K. Kumar, S. Srivastava, A. Chowdhury, La3+-doped CeO2 system: negating the myths with a tailor-made ceramic. Scr. Mater. 157, 138–141 (2018)

    Article  Google Scholar 

  16. A. Bueno-López, K. Krishna, M. Makkee, J. Moulijn, Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. J. Catal. 230, 237–248 (2005)

    Article  Google Scholar 

  17. S. Dikmen, P. Shuk, M. Greenblatt, Hydrothermal synthesis and properties of Ce1−xLaxO2−δ solid solutions. Solid State Ion. 126, 89–95 (1999)

    Article  Google Scholar 

  18. T. Mori, J. Drennan, J.-H. Lee, J.-G. Li, T. Ikegami, Oxide ionic conductivity and microstructures of Sm-or La-doped CeO2-based systems. Solid State Ion. 154, 461–466 (2002)

    Article  Google Scholar 

  19. S. Liang, E. Broitman, Y. Wang, A. Cao, G. Veser, Highly stable, mesoporous mixed lanthanum–cerium oxides with tailored structure and reducibility. J. Mater. Sci. 46, 2928–2937 (2011)

    Article  Google Scholar 

  20. H. Li, G. Lu, Y. Wang, Y. Guo, Y. Guo, Synthesis of flower-like La or Pr-doped mesoporous ceria microspheres and their catalytic activities for methane combustion. Catal. Commun. 11, 946–950 (2010)

    Article  Google Scholar 

  21. B. Zhang, D. Li, X. Wang, Catalytic performance of La–Ce–O mixed oxide for combustion of methane. Catal. Today 158, 348–353 (2010)

    Article  Google Scholar 

  22. S. Tsunekawa, K. Ishikawa, Z.-Q. Li, Y. Kawazoe, A. Kasuya, Origin of anomalous lattice expansion in oxide nanoparticles. Phys. Rev. Lett. 85, 3440 (2000)

    Article  Google Scholar 

  23. N.S. Arul, D. Mangalaraj, P.C. Chen, N. Ponpandian, C. Viswanathan, Self assembly of Co doped CeO2 microspheres from nanocubes by hydrothermal method and their photodegradation activity on AO7. Mater. Lett. 65, 3320–3322 (2011)

    Article  Google Scholar 

  24. F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29, 13737–13745 (2018)

    Google Scholar 

  25. F. Chen, Y. Cao, D. Jia, Preparation and photocatalytic property of CeO2 lamellar. Appl. Surf. Sci. 257, 9226–9231 (2011)

    Article  Google Scholar 

  26. W. MingYan, Z. Wei, Z. DongEn et al., CeO2 hollow nanospheres decorated reduced graphene oxide composite for efficient photocatalytic dye-degradation. Mater. Lett. 137, 229–232 (2014)

    Article  Google Scholar 

  27. A.D. Liyanage, S.D. Perera, K. Tan, Y. Chabal, K.J. Balkus Jr., Synthesis, characterization, and photocatalytic activity of Y-doped CeO2 nanorods. ACS Catal. 4, 577–584 (2014)

    Article  Google Scholar 

  28. J. Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj, R.T.R. Kumar, Cobalt-doped cerium oxide nanoparticles: enhanced photocatalytic activity under UV and visible light irradiation. Mater. Sci. Semicond. Process. 26, 218–224 (2014)

    Article  Google Scholar 

  29. M. Panahi-Kalamuei, S. Alizadeh, M. Mousavi-Kamazani, M. Salavati-Niasari, Synthesis and characterization of CeO2 nanoparticles via hydrothermal route. J. Ind. Eng. Chem. 21, 1301–1305 (2015)

    Article  Google Scholar 

  30. F.S. Sangsefidi, M. Salavati-Niasari, H. Khojasteh, M. Shabani-Nooshabadi, Synthesis, characterization and investigation of the electrochemical hydrogen storage properties of CuO–CeO2 nanocomposites synthesized by green method. Int. J. Hydrog. Energy 42, 14608–14620 (2017)

    Article  Google Scholar 

  31. K. Singh, R. Kumar, A. Chowdhury, Synthesis of La-doped ceria nanoparticles: impact of lanthanum depletion. J. Mater. Sci. 51, 4134–4141 (2016)

    Article  Google Scholar 

  32. S.H. Lin, C.F. Peng, Treatment of textile wastewater by electrochemical method. Water Res. 28, 277–282 (1994)

    Article  Google Scholar 

  33. K. Kavitha, T. Vijayaraghavan, C. Kumbhar, P. Ojha, A. Ashok, Structural and conductivity properties of K doped Ba4Ca2Nb2O11 (BCN) complex perovskite for energy applications. J. Alloys Compd. 686, 930–937 (2016)

    Article  Google Scholar 

  34. R. Ramamoorthy, D. Sundararaman, S. Ramasamy, Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ion. 123, 271–278 (1999)

    Article  Google Scholar 

  35. A.V. Coles-Aldridge, R.T. Baker, Ionic conductivity in multiply substituted ceria-based electrolytes. Solid State Ion. 316, 9–19 (2018)

    Article  Google Scholar 

  36. J. McBride, K. Hass, B. Poindexter, W. Weber, Raman and x-ray studies of Ce1−xRExO2−y, where RE = La, Pr, Nd, Eu, Gd, and Tb. J. Appl. Phys. 76, 2435–2441 (1994)

    Article  Google Scholar 

  37. G. Xiao, S. Li, H. Li, L. Chen, Synthesis of doped ceria with mesoporous flowerlike morphology and its catalytic performance for CO oxidation. Microporous Mesoporous Mater. 120, 426–431 (2009)

    Article  Google Scholar 

  38. L. Wu, J.A. Aguiar, P.P. Dholabhai et al., Interface energies of nanocrystalline doped ceria: effects of manganese segregation. J. Phys. Chem. C 119, 27855–27864 (2015)

    Article  Google Scholar 

  39. N. Laosiripojana, S. Assabumrungrat, Catalytic dry reforming of methane over high surface area ceria. Appl. Catal. B 60, 107–116 (2005)

    Article  Google Scholar 

  40. H. Yao, Y.Y. Yao, Ceria in automotive exhaust catalysts: I. oxygen storage. J. Catal. 86, 254–265 (1984)

    Article  Google Scholar 

  41. Y.J. Kang, H.J. Park, G.M. Choi, The effect of grain size on the low-temperature electrical conductivity of doped CeO2. Solid State Ion. 179, 1602–1605 (2008)

    Article  Google Scholar 

  42. N. Jaiswal, S. Upadhyay, D. Kumar, O. Parkash, Ionic conductivity investigation in lanthanum (La) and strontium (Sr) co-doped ceria system. J. Power Sour. 222, 230–236 (2013)

    Article  Google Scholar 

  43. D.K. Pradhan, R. Choudhary, B. Samantaray, Studies of dielectric relaxation and AC conductivity behavior of plasticized polymer nanocomposite electrolytes. Int. J. Electrochem. Sci. 3, 597–608 (2008)

    Google Scholar 

  44. B. Paul, K. Singh, T. Jaroń, A. Roy, A. Chowdhury, Structural properties and the fluorite–pyrochlore phase transition in La2Zr2O7: the role of oxygen to induce local disordered states. J. Alloys Compd. 686, 130–136 (2016)

    Article  Google Scholar 

  45. T.X. Sayle, S.C. Parker, C.R.A. Catlow, Surface segregation of metal ions in cerium dioxide. J. Phys. Chem. 98, 13625–13630 (1994)

    Article  Google Scholar 

  46. X. Liu, K. Zhou, L. Wang, B. Wang, Y. Li, Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 131, 3140–3141 (2009)

    Article  Google Scholar 

  47. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112, 269–278 (2004)

    Article  Google Scholar 

  48. K. Singh, K. Kumar, S. Nayak et al., Structural and dielectric properties of the fluorite-type LaxCe1−xO2−δ ceramics. J. Phys. D 50, 495601 (2017)

    Article  Google Scholar 

  49. R. Gerhardt-Anderson, A. Nowick, Ionic conductivity of CeO2 with trivalent dopants of different ionic radii. Solid State Ion. 5, 547–550 (1981)

    Article  Google Scholar 

  50. J.E. Hong, T. Inagaki, S. Ida, T. Ishihara, Titania-added Ce0.6La0.4O2−δ for the buffer layer of high-performance solid oxide fuel cells using doped lanthanum gallate electrolyte film. J. Am. Ceram. Soc. 95, 3588–3596 (2012)

    Article  Google Scholar 

  51. H. Yamamura, E. Katoh, M. Ichikawa, K. Kakinuma, T. Mori, H. Haneda, Multiple doping effect on the electrical conductivity in the (Ce(1−xy)La(x)M(y))O2−delta (M = Ca, Sr) system. Electrochemistry 68, 455–459 (2000)

    Google Scholar 

  52. L. Li, B. Zhu, J. Zhang, C. Yan, Y. Wu, Electrical properties of nanocube CeO2 in advanced solid oxide fuel cells. Int. J. Hydrog. Energy 43, 12909–12916 (2018)

    Article  Google Scholar 

  53. K. Eguchi, Ceramic materials containing rare earth oxides for solid oxide fuel cell. J. Alloys Compd. 250, 486–491 (1997)

    Article  Google Scholar 

  54. P.C.C. Daza, R.A.M. Meneses, J.L. de Almeida Ferreira, J.A. Araujo, A.C.M. Rodrigues, C.R.M. da Silva, Influence of microstructural characteristics on ionic conductivity of ceria based ceramic solid electrolytes. Ceram. Int. 44, 2138–2145 (2018)

    Article  Google Scholar 

  55. E.Y. Pikalova, A.A. Murashkina, V.I. Maragou, A.K. Demin, V.N. Strekalovsky, P.E. Tsiakaras, CeO2 based materials doped with lanthanides for applications in intermediate temperature electrochemical devices. Int. J. Hydrog. Energy 36, 6175–6183 (2011)

    Article  Google Scholar 

  56. X. Sha, Z. Lü, X. Huang et al., Study on La and Y co-doped ceria-based electrolyte materials. J. Alloys Compd. 428, 59–64 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Saurabh Srivastava was thankful to Indian Institute of Technology Patna, India, for the financial assistance. The authors gratefully acknowledge the financial support from DST-SERB, Government of India, Grant No. SB/FTP/ETA-0160/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Chowdhury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 353 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Kumar, K., Singh, K. et al. Functional properties of LaxCe1−xO2−δ nanocrystals and their bulk ceramics. J Mater Sci: Mater Electron 30, 2096–2106 (2019). https://doi.org/10.1007/s10854-018-0481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0481-3

Navigation