Skip to main content
Log in

Printed flexible bifunctional electrochemical urea-pH sensor based on multiwalled carbon nanotube/polyaniline electronic ink

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 22 February 2019

This article has been updated

Abstract

Urea concentration and pH are two crucial parameters in food and clinical analysis. Traditional analytical methods of urea and pH determination are unsuitable for field and involve complex instrumentation or and enzyme-based assays. In this study, we used screen printing technology to prepare an electrochemical sensor with a carbon electrode modified by a multiwalled carbon nanotube/polyaniline (MWCNT/PANi) composite for the simultaneous detection of urea and pH. Urea was detected by a simple current–potential (IV) experiment and its concentration level on the MWCNT/PANi-modified screen-printed carbon electrode (SPCE) surface was determined by cyclic voltammetry. The MWCNT/PANi-modified SPCE had a linear response (R2 = 0.99902), lower detection limit, higher selectivity, and higher sensitivity than reported biosensors. Specifically, the detection limit was 10 µM and the sensitivity was 0.38 mA mM−1 cm−2 in the urea concentration range of 10–50 µM. Chronoamperometry was applied to investigate the changes in voltage on the MWCNT/PANi-modified SPCE with varying solution pH. The sensor exhibited excellent linearity (R2 = 0.99089) and an average sensitivity of 20.63 mV/pH over a wide pH range of 2–11. Thus, the MWCNT/PANi-modified SPCE has a promising field application as a simple, bifunctional non-enzymatic sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 22 February 2019

    In the original version of this article, Fig. 7a, b and c was unfortunately displayed incorrectly.

References

  1. R. Sha, K. Komori, S. Badhulika, Electrochim. Acta 233, 44–51 (2017)

    Article  Google Scholar 

  2. A.A. Ibrahim, R. Ahmad, A. Umar, M.S. Al-Assiri, A.E. Al-Salami, R. Kumar, S.G. Ansari, S. Baskoutas, Biosens. Bioelectron. 98, 254–260 (2017)

    Article  Google Scholar 

  3. J. Kato, T. Koseki, Y. Aoki, A. Yamada, T. Tanaka, Anal. Sci. 29, 753–755 (2013)

    Article  Google Scholar 

  4. R. Mihajlovic, Z. Stanic, Anal. Chim. Acta 516, 61–66 (2004)

    Article  Google Scholar 

  5. A.V. Rebriiev, N.F. Starodub, Electroanalysis 16, 1891–1895 (2004)

    Article  Google Scholar 

  6. N. Shams, H.N. Lim, R. Hajian, N.A. Yusof, J. Abdullah, Y. Sulaiman, I. Ibrahim, N.M. Huang, A. Pandikumar, J. Appl. Electrochem. 46, 655–666 (2016)

    Article  Google Scholar 

  7. S. Mondal, M.V. Sangaranarayanan, Sens. Actuator B 177, 478–486 (2013)

    Article  Google Scholar 

  8. G.J. Kalaivani, S.K. Suja, Appl. Surf. Sci. 449, 266–276 (2018)

    Article  Google Scholar 

  9. R.K. Srivastava, S. Srivastava, T.N. Narayanan, B.D. Mahlotra, R. Vajtai, P.M. Ajayan, A. Srivastava, ACS Nano 6, 168–175 (2012)

    Article  Google Scholar 

  10. S.G. Ansari, R. Wahab, Z.A. Ansari, Y.-S. Kim, G. Khang, A. Al-Hajry, H.-S. Shin, Sens. Actuator B 137, 566–573 (2009)

    Article  Google Scholar 

  11. P. Salvo, N. Calisi, B. Melai, B. Cortigiani, M. Mannini, A. Caneschi, G. Lorenzetti, C. Paoletti, T. Lomonaco, A. Paolicchi, I. Scataglini, V. Dini, M. Romanelli, R. Fuoco, F. Di Francesco, Biosens. Bioelectron. 91, 870–877(2017)

    Article  Google Scholar 

  12. M. Simic, L. Manjakkal, K. Zaraska, G.M. Stojanovic, R. Dahiya, IEEE Sens. J. 17, 248–255 (2017)

    Article  Google Scholar 

  13. B. Kuswandi, A. Nurfawaidi, Food Control 82, 91–100(2017)

    Article  Google Scholar 

  14. R. Rahimi, M. Ochoa, T. Parupudi, X. Zhao, I.K. Yazdi, M.R. Dokmeci, A. Tamayol, A. Khademhosseini, B. Ziaie, Sens. Actuators B 229, 609–617 (2016)

    Article  Google Scholar 

  15. D. Shao, J. Hu, C.L. Chen, G. Sheng, X. Ren, X. Wang, J. Phys. Chem. C 114, 21524–21530 (2010)

    Article  Google Scholar 

  16. W. Su, J. Xu, X. Ding, IEEE Trans. Nanobiosci. 15, 812–819 (2016)

    Article  Google Scholar 

  17. S.H. Domingues, R.V. Salvatierra, M.M. Oliveirab, A.J.G. Zarbin, Chem. Commun. 47, 2592–2594 (2011)

    Article  Google Scholar 

  18. L.J. Bai, Y.H. Chen, Y. Bai, Y.J. Chen, J. Zhou, A.L. Huang, Biomaterials 133, 11–19 (2017)

    Article  Google Scholar 

  19. A. Jedrzak, T. Rebis, M. Nowicki, K. Synoradzki, R. Mrowczynski, T. Jesionowski, Appl. Surf. Sci. 455, 455–464 (2018)

    Article  Google Scholar 

  20. F. Criscuolo, I. Taurino, F. Stradolini, S. Carrara, G. De Micheli, Anal. Chim. Acta 1027, 22–32 (2018)

    Article  Google Scholar 

  21. Q. Lin, X.M. Jiang, X.Q. Ma, J. Liu, H. Yao, Y.M. Zhang, T.B. Wei, Sens. Actuators B 272, 139–145 (2018)

    Article  Google Scholar 

  22. J.D. Wang, X.Y. Wang, H.S. Tang, S.Q. He, Z.H. Gao, R.X. Niu, Y. Zheng, S.M. Han, Sens. Actuators B 272, 146–150 (2018)

    Article  Google Scholar 

  23. L. Guadarrama-Fernandez, M. Novell, P. Blondeau, F.J. Andrade, Food Chem. 265, 64–69 (2018)

    Article  Google Scholar 

  24. S. Jia, C. Bian, J. Sun, J. Tong, S. Xia, Biosens. Bioelectron. 114, 15–21 (2018)

    Article  Google Scholar 

  25. Y. Xu, Y. Chen, W.F. Fu, Appl. Catal. B 236, 176–183 (2018)

    Article  Google Scholar 

  26. A.A. Ensafi, P. Nasr-Esfahani, B. Rezaei, Sens. Actuators B 270, 192–199 (2018)

    Article  Google Scholar 

  27. C.Q. Lia, Z.M. Sun, A.K. Song, X.B. Dong, S.L. Zheng, D.D. Dionysiou, Appl. Catal. B 236, 76–87 (2018)

    Article  Google Scholar 

  28. S. Bietti, F.B. Basset, D. Scarpellini, A. Fedorov, A. Ballabio, L. Esposito, M. Elborg, T. Kuroda, A. Nemcsica, L. Toth, C. Manzoni, C. Vozzi, S. Sanguinetti, Nanotechnology (2018). https://doi.org/10.1088/1361-6528/aacd20

    Google Scholar 

  29. F. Yang, Y. Liang, L.X. Liu, Q. Zhu, W.H. Wang, X.T. Zhu, J.D. Guo, Front. Phys. (2018). https://doi.org/10.1007/s11467-018-0769-z

    Google Scholar 

  30. V. Ball, R.J. Toh, N.H. Voelcker, H. Thissen, R.A. Evans, Colloids Surf. A 552, 124–129 (2018)

    Article  Google Scholar 

  31. X.M. Song, C.X. Yuan, Y.M. Wang, B.X. Wang, H. Mao, S.Y. Wu, Y. Zhang, Appl. Surf. Sci. 455, 181–186 (2018)

    Article  Google Scholar 

  32. S. Kuk, H.K. Nam, Z. Wang, D.J. Hwang, J. Nanosci. Nanotechnol. 18, 7085–7089 (2018)

    Article  Google Scholar 

  33. S.J. Liu, H.J. Li, L.L. Zhang, D. Hu, Q. Liu, Appl. Surf. Sci. 455, 75–83 (2018)

    Article  Google Scholar 

  34. Y. Pan, H.T. Zhao, J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.46583

    Google Scholar 

  35. R.K. Pandey, H. Pandey, A. Nayak, Chem. Sel. 3, 5874–5882 (2018)

    Google Scholar 

  36. M.M. Makhlouf, A.S. Radwan, B. Ghazal, Appl. Surf. Sci. 452, 337–351 (2018)

    Article  Google Scholar 

  37. Y. Takano, K. Oyaizu, Mater. Lett. 228, 414–417 (2018)

    Article  Google Scholar 

  38. C. Casimero, A. McConville, J.J. Fearon, C.L. Lawrence, C.M. Taylor, R.B. Smith, J. Davis, Anal. Chim. Acta 1027, 1–8 (2018)

    Article  Google Scholar 

  39. J.W. Tu, Y. Gan, T. Liang, H. Wan, P. Wang, Sens. Actuators B 272, 582–588 (2018)

    Article  Google Scholar 

  40. T. Yao, W. Jia, X. Tong, Y. Feng, Y. Qi, X. Zhang, J. Wu, J. Colloid Interface Sci. 527, 214–221 (2018)

    Article  Google Scholar 

  41. W.B. Yu, T.T. Zhang, M.F. Ma, C.C. Chen, X. Liang, K. Wen, Z.H. Wang, J.Z. Shen, Anal. Chim. Acta 1027, 130–136 (2018)

    Article  Google Scholar 

  42. N.R. Tanguy, M. Thompson, N. Yan, Sens. Actuators B 257, 1044–1064 (2018)

    Article  Google Scholar 

  43. Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, Sens. Actuators B 242, 269–279 (2016)

    Article  Google Scholar 

  44. X.F. Lu, H. Mao, D.M. Chao, W.J. Zhang, Y. Wei, Macromol. Chem. Phys. 207, 2142–2152 (2006)

    Article  Google Scholar 

  45. J. Shen, C. Yang, X. Li, G. Wang, ACS Appl. Mater. Interfaces 5, 8467–8476 (2013)

    Article  Google Scholar 

  46. M. Zhybak, V. Beni, M.Y. Vagin, E. Dempsey, A.P.F. Turner, Y. Korpan, Biosens. Bioelectron. 77, 505–511 (2016)

    Article  Google Scholar 

  47. V. Kumar, A. Chopra, S. Arora, S. Yadav, S. Kumar, I. Kaur, RSC Adv. 5, 13278–13284 (2015)

    Article  Google Scholar 

  48. W. Jia, L. Su, Y. Lei, Biosens. Bioelectron. 30, 158–164 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51502203), the Tianjin Young Overseas High-level Talent Plans (Grant No. 01001502), the Tianjin Science and Technology Foundation (Grant No. 17ZXZNGX00090) and Tianjin Development Program for Innovation and Entrepreneurship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Pan, Jun Liu or Zhenyu Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Q., Yang, Z., Song, Y. et al. Printed flexible bifunctional electrochemical urea-pH sensor based on multiwalled carbon nanotube/polyaniline electronic ink. J Mater Sci: Mater Electron 30, 1751–1759 (2019). https://doi.org/10.1007/s10854-018-0447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0447-5

Navigation