Skip to main content
Log in

Dielectric and microwave absorption properties of LiCoO2 and its enhancement by micro-doping with metal ions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

LiCoO2 powders are the popular active cathode material in lithium batteries, but their dielectric and microwave absorption properties were seldom reported. In this work, the LiCoO2 powders were synthesized by solid-state reaction. And in order to enhance their dielectric properties, influence of metal ions micro-dopant on the electromagnetic property of LiM0.94Co0.06O2 powders (M = Mg, Zn, Ni, Mn and Y) was investigated. The phase and composition were characterized. The dielectric properties and the microwave absorption properties were evaluated. Compared to dopant of Zn, Ni, Mn and Y ions, the results showed that both the real part (ε′) and imaginary part (ε″) of LiM0.94Co0.06O2/paraffin mixtures were obviously increased by doping Mg ions. One layer absorbent with 75 wt% LiMg0.06Co0.94O2 content of a thickness of 1.8 mm had the optimum microwave absorption properties. The lowest reflection loss was − 36.6 dB. The results indicated that LiCoO2 and LiM0.06Co0.94O2 powders would be a possible candidate for microwave absorption materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.J. Vinoy, R.M. Jha, Trends in radar absorbing materials technology. Sadhana 20, 815–850 (1995). https://doi.org/10.1007/Bf02744411

    Article  Google Scholar 

  2. T. Tsutaoka, M. Ueshima, T. Tokunaga, T. Nakamura, K. Hatakeyama, Frequency dispersion and temperature-variation of complex permeability of Ni-Zn ferrite composite-materials. J. Appl. Phys. 78(6), 3983–3991 (1995). https://doi.org/10.1063/1.359919

    Article  Google Scholar 

  3. Y. Liu, Y.Y. Li, F. Luo, X.L. Su, J. Xu, J.B. Wang, X.H. He, Y.H. Qu, Electromagnetic and microwave absorption properties of SiO2-coated Ti3SiC2 powders with higher oxidation resistance. J. Alloy. Compd. 715, 21–28 (2017). https://doi.org/10.1016/j.jallcom.2017.04.301

    Article  Google Scholar 

  4. Y.W. Dai, M.Q. Sun, C.G. Liu, Z.Q. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cem. Concr. Compos. 32(7), 508–513 (2010). https://doi.org/10.1016/j.cemconcomp.2010.03.009

    Article  Google Scholar 

  5. Z.H. Zhu, Y.F. Zhou, P.F. Yan, R.S. Vemuri, W. Xu, R. Zhao, X.L. Wang, S. Thevuthasan, D.R. Baer, C.M. Wang, In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15(9), 6170–6176 (2015). https://doi.org/10.1021/acs.nanolett.5b02479

    Article  Google Scholar 

  6. W.C. Zhou, X.J. Hu, X.X. Bai, S.Y. Zhou, C.H. Sun, J. Yan, P. Chen, Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-poly(3,4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interface 3(10), 3839–3845 (2011). https://doi.org/10.1021/am2004812

    Article  Google Scholar 

  7. H. Tukamoto, A.R. West, Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J. Electrochem. Soc. 144(9), 3164–3168 (1997). https://doi.org/10.1149/1.1837976

    Article  Google Scholar 

  8. R. Alcantara, P. Lavela, J.L. Tirado, R. Stoyanova, E. Zhecheva, Structure and electrochemical properties of boron-doped LiCoO2. J. Solid State Chem. 134(2), 265–273 (1997). https://doi.org/10.1006/jssc.1997.7552

    Article  Google Scholar 

  9. X.M. Zhu, K.H. Shang, X.Y. Jiang, X.P. Ai, H.X. Yang, Y.L. Cao, Enhanced electrochemical performance of Mg-doped LiCoO2 synthesized by a polymer-pyrolysis method. Ceram. Int. 40(7), 11245–11249 (2014). https://doi.org/10.1016/j.ceramint.2014.03.170

    Article  Google Scholar 

  10. I. Saadoune, C. Delmas, On the LixNi0.8Co0.2O2 system. J. Solid State Chem. 136(1), 8–15 (1998). https://doi.org/10.1006/jssc.1997.7599

    Article  Google Scholar 

  11. M.J. Zou, M. Yoshio, S. Gopukumar, J. Yamaki, Synthesis of high-voltage (4.5 V) cycling doped LiCoO2 for use in lithium rechargeable cells. Chem. Mater. 15(25), 4699–4702 (2003). https://doi.org/10.1021/cm0347032

    Article  Google Scholar 

  12. F. Nobili, F. Croce, R. Tossici, I. Meschini, P. Reale, R. Marassi, Sol-gel synthesis and electrochemical characterization of Mg-/Zr-doped LiCoO2 cathodes for Li-ion batteries. J. Power Sources 197, 276–284 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.053

    Article  Google Scholar 

  13. H.F. Wang, Y.I. Jang, B.Y. Huang, D.R. Sadoway, Y.T. Chiang, TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146(2), 473–480 (1999). https://doi.org/10.1149/1.1391631

    Article  Google Scholar 

  14. S. Gopukumar, Y. Jeong, K.B. Kim, Synthesis and electrochemical performance of tetravalent doped LiCoO2 in lithium rechargeable cells. Solid State Ion. 159(3–4), 223–232 (2003). https://doi.org/10.1016/S0167-2738(03)00081-X

    Article  Google Scholar 

  15. K. Kang, G. Ceder (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74 (9). https://doi.org/10.1103/PhysRevB.74.094105

  16. E. Rossen, J.N. Reimers, J.R. Dahn, Synthesis and electrochemistry of spinel Lt-LiCoO2. Solid State Ion. 62(1–2), 53–60 (1993). https://doi.org/10.1016/0167-2738(93)90251-W

    Article  Google Scholar 

  17. S. Hufner, Electronic-structure of NiO and related 3d-transition-metal compounds. Adv. Phys. 43(2), 183–356 (1994). https://doi.org/10.1080/00018739400101495

    Article  Google Scholar 

  18. L. Daheron, R. Dedryvere, H. Martinez, M. Menetrier, C. Denage, C. Delmas, D. Gonbeau, Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS. Chem. Mater. 20(2), 583–590 (2008). https://doi.org/10.1021/cm702546s

    Article  Google Scholar 

  19. Y.V. Fedoseeva, M.L. Kosinova, S.A. Prokhorova, I.S. Merenkov, L.G. Bulusheva, A.V. Okotrub, F.A. Kuznetsov (2012) X-ray spectroscopic study of the electronic structure of boron carbonitride films obtained by chemical vapor deposition on Co/Si and CoO(x)/Si substrates. J. Struct. Chem. 53(4), 690–698. https://doi.org/10.1134/S0022476612040117

    Article  Google Scholar 

  20. J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2(6), 1319–1324 (2000). https://doi.org/10.1039/a908800h

    Article  Google Scholar 

  21. Y.B. Li, G. Chen, Q.H. Li, G.Z. Qiu, X.H. Liu, Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. J. Alloy. Compd. 509(10), 4104–4107 (2011). https://doi.org/10.1016/j.jallcom.2010.12.100

    Article  Google Scholar 

  22. S. Valanarasu, R. Chandramohan, J. Thirumalai, T.A. Vijayan, Structural and electrochemical investigation of Zn-doped LiCoO2 powders. Ionics 18(1–2), 39–45 (2012). https://doi.org/10.1007/s11581-011-0607-6

    Article  Google Scholar 

  23. Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, X.Y. Fang (2009) Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J. Appl. Phys. 106 (5). https://doi.org/10.1063/1.3204958

  24. L. Zhou, W.C. Zhou, J.B. Su, F. Luo, D.M. Zhu, Y.L. Dong, Plasma sprayed Al2O3/FeCrAl composite coatings for electromagnetic wave absorption application. Appl. Surf. Sci. 258(7), 2691–2696 (2012). https://doi.org/10.1016/j.apsusc.2011.10.119

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural science Foundation of China. No. 51072165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zhou, W., Luo, F. et al. Dielectric and microwave absorption properties of LiCoO2 and its enhancement by micro-doping with metal ions. J Mater Sci: Mater Electron 30, 323–331 (2019). https://doi.org/10.1007/s10854-018-0296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0296-2

Navigation