Skip to main content
Log in

Structural and electrochemical investigation of Zn-doped LiCoO2 powders

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A commercial cathode material (LiCoO2) was modified by doping with Zn to improve its performance in lithium battery. The structure and morphology of the doped cathode material were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). The synthesized samples were characterized using X-ray photoelectron spectra (XPS), used to investigate the elementary states on the system. The electrical conductivity variations of doped powders were measured in the temperature range between 30 and 150 °C. The 3 mol% Zn-doped LiCoO2 sample shows the highest reversibility capacity (178 mA h g−1) after 30 cycles in the voltage window 3.0–4.5 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhaohui C, Zhonghua L, Dahna JR (2002) Staging phase transitions in LixCoO2. J Electrochem Soc 149:A1604–A1609

    Article  Google Scholar 

  2. Jeong KY, Jaephil C, Joon KT, Byungwoo P (2003) Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. J Electrochem Soc 150:A1723–A1725

    Article  Google Scholar 

  3. Sun X, Yang XQ, McBreen (2001) New phases and phase transitions observed in over-charged states of LiCoO2-based cathode materials. J Power Sources 97:274–276

    Article  Google Scholar 

  4. Jeong KY, Kyu LE, Hyemin K, Jaephil C, Whan CY, Byungwoo P, Mo OS, Kyu YJ (2004) Changes in the lattice constants of thin-film LiCoO2 cathodes at the 4.2 V charged state. J Electrochem Soc 151:A1063–A1067

    Article  Google Scholar 

  5. Gabrisch H, Yazami R, Fultz B (2004) Hexagonal to cubic spinel transformation in lithiated cobalt oxide. J Electrochem Soc 151:A891–A897

    Article  CAS  Google Scholar 

  6. Endo E, Yasuda T, Kita A, Yamaura K, Sekai K (2000) A LiCoO2 cathode modified by plasma chemical vapor deposition for higher voltage performance. J Electrochem Soc 147:1291–1294

    Article  CAS  Google Scholar 

  7. Zhaoxiang W, Xuejie H, Liquan C (2003) Performance improvement of surface-modified LiCoO2 cathode materials: an infrared absorption and X-ray photoelectron spectroscopic investigation. J Electrochem Soc 150:A199–A208

    Google Scholar 

  8. Tukamoto H, West AR (1997) Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc 144:3164–3168

    Google Scholar 

  9. Zhaohui C, Dahn JR (2004) Improving the capacity retention of LiCoO2 cycled to 4.5 V by heat-treatment. Electrochem Solid State Lett 7:A11–A14

    Article  Google Scholar 

  10. Jaephil C, Byoungsoo K, Gon LJ, Woon KY, Byungwoo P (2005) Annealing-temperature effect on various cutoff-voltage electrochemical performances in AlPO4-nanoparticle-coated LiCoO2. J Electrochem Soc 152:A32–A36

    Article  Google Scholar 

  11. Jones CDW, Rossen E, Dahn JR (1994) Structure and electrochemistry of LixCryCo1−yO2. Solid State Ionics 68:65–69

    Article  CAS  Google Scholar 

  12. Stoyanova R, Zhecheva E, Zarkova L (1994) Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1−yO2 solid solutions. Solid State Ionics 73:233–240

    Article  CAS  Google Scholar 

  13. Kobayashi H, Shigemura H, Tabuchi M, Sakaebe H, Ado K, Kageyama H, Hirano A, Kanno R, Wakita M, Morimoto S, Nasu S (2000) Electrochemical properties of hydrothermally obtained LiCo1–xFexO2 as a positive electrode material for rechargeable lithium batteries. J Electrochem Soc 147:960–969

    Article  CAS  Google Scholar 

  14. Holzapfel M, Schreiner R, Ott A (2001) Lithium-ion conductors of the system LiCo1−xFexO2: a first electrochemical investigation. Electrochim Acta 46:1063–1070

    Article  CAS  Google Scholar 

  15. Delmas C, Saadoune I, Rougier A (1993) The cycling properties of the LixNi1−yCoyO2 electrode. J Power Sources 44:595–602

    Article  CAS  Google Scholar 

  16. Delmas C, Saadoune I (1992) Electrochemical and physical properties of the LixNi1−yCoyO2 phases. Solid State Ionics 53:370–375

    Article  Google Scholar 

  17. Lee KK, Kim KB (2000) Electrochemical and structural characterization of LiNi1–yCoyO2 (0 y 0.2) positive electrodes during initial cycling. J Electrochem Soc 147:1709–1717

    Article  CAS  Google Scholar 

  18. Madhavi S, Subba Rao GV, Chowdari BVR, Li SFY (2001) Synthesis and cathodic properties of LiCo1–yRhyO2 (0 y 0.2) and LiRhO2. J Electrochem Soc 148:A1279–A1286

    Article  CAS  Google Scholar 

  19. Sathiyamoorthi R, Shakkthivel P, Vasudevan T (2007) New solid-state synthesis routine and electrochemical properties of calcium based ceramic oxide battery materials for lithium battery applications. Mater Lett 61:3746–3750

    Article  CAS  Google Scholar 

  20. Sathiyamoorthi R, Chandrasekaran R, Santhosh P, Saminathan K, Gangadharan R, Vasudevan T (2006) Electrochemical characterization of nanocrystalline LiMxCo1-xO2 (M = Mg, Ca) prepared by a solid-state thermal method. Syn React Inorg Metal Org Nano Metal Chem 36:71–81

    CAS  Google Scholar 

  21. Fey GTK, Chen JG, Subramanian V, Osaka T (2002) Preparation and electrochemical properties of Zn-doped LiNi0.8Co0.2O2. J Power Sources 112:384–394

    Article  CAS  Google Scholar 

  22. Kalyani P, Kalaiselvi N, Muniyandi N (2002) An innovative soft-chemistry approach to synthesize LiNiVO4. Mater Chem Phys 77:662–668

    Article  Google Scholar 

  23. Zou M, Yoshio M, Gopukumar S, Yamaki JI (2004) Synthesis and electrochemical performance of high voltage cycling LiM0.05Co0.95O2 as cathode material for lithium rechargeable cells. Electrochem Solid State Lett 7:A176–A179

    Article  CAS  Google Scholar 

  24. Sathiyamoorthi R, Chandrasekaran R, Gopalan A, Vasudevan T (2008) Synthesis and electrochemical performance of high voltage cycling LiCo0.8M0.2O2 (M = Mg, Ca, Ba) as cathode material. Mater Res Bull 43:1401–1411

    Article  CAS  Google Scholar 

  25. Myung ST, Kumagai N, Komaba S, Chung HT (2000) Preparation and electrochemical characterization of LiCoO2 by the emulsion drying method. J Appl Electrochem 30:1081–1087

    Article  CAS  Google Scholar 

  26. Alcantara R, Oritz GF, Lavela P, Tirado JL, Jaegermann W, Thiben A (2005) Rotor blade grinding and re-annealing of LiCoO2: SEM, XPS, EIS and electrochemical study. J Electronal Chem 584:147–152

    Article  CAS  Google Scholar 

  27. Vijayan TA, Chandramohan R, Valanarasu S, Thirumalai T, Venkataswaran S, Mahalingam T, Srikumar SR (2008) Optimization of growth conditions of ZnO nano thin films by chemical double dip technique. Sci Technol Adv Mater 9:035007–035012

    Article  Google Scholar 

  28. Huang S, Wen Z, Yang X, Gu Z, Xu X (2005) Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives. J Power Sources 148:72–77

    Article  CAS  Google Scholar 

  29. Ghosh P, Mahanty S, Basu RN (2008) Effect of silver addition on the properties of combustion synthesized nanocrystalline LiCoO2. Mater Chem Phys 110:406–410

    Article  CAS  Google Scholar 

  30. Kim HJ, Jeong YU, Lee JH, Kim JJ (2006) Crystal structures, electrical conductivities and electrochemical properties of LiCo1−xMgxO2 (0 ≤ x ≤ 0.11). J Power Sources 159:233–236

    Article  CAS  Google Scholar 

  31. Kim HS, Ko TK, Na BK, Cho WI, Chao BW (2004) Electrochemical properties of LiMxCo1−xO2 [M = Mg, Zr] prepared by sol–gel process. J Power Sources 138:232–237

    Article  CAS  Google Scholar 

  32. Ohzuku T, Ueda A (1994) Solid-state redox reactions of LiCoO2 (R m) for 4 volt secondary lithium cells. J Electrochem Soc 141:2972–2977

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the University Grants Commission (UGC-SERO), Hyderabad, India, for the financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandramohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valanarasu, S., Chandramohan, R., Thirumalai, J. et al. Structural and electrochemical investigation of Zn-doped LiCoO2 powders. Ionics 18, 39–45 (2012). https://doi.org/10.1007/s11581-011-0607-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0607-6

Keywords

Navigation