Skip to main content
Log in

Enhancing the Co gas sensing properties of ZnO thin films with the decoration of MWCNTs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) onto flower-like patterned ZnO seed layers were prepared by spin coating method. The etching of the MWCNTs was examined by HCl acid treatment. The effect of structural, morphological and elemental properties of the ZnO/MWCNTs were determined by XRD, SEM, and EDX, respectively. The gas sensing properties of ZnO seed layer and MWCNT/ZnO nanocomposites were studied as a function of operating temperature and gas concentration. The incorporation of MWCNT were given results such as reducing the operating temperature to 70 °C and enhancement in sensor response for 25 ppm CO gas. It was obtained that the highest sensing response of 62% at 70 °C for raw-MWCNTs/ZnO sensor as compared to etched-MWCNT/ZnO and ZnO sensor which gave a sensing response of 19% and 21% at operating temperature of 70 °C and 150 °C, respectively. Results showed that the deposition of metal oxide sensors with MWCNT is a promising strategy for improvement of CO gas sensing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Dhahri, M. Hjiri, L.El Mir, A. Bonavita, D. Iannazzo, M. Latino, N. Donato, S.G. Leonardi, G. Neri, J. Phys. D (2016) https://doi.org/10.1088/0022-3727/49/13/135502

    Google Scholar 

  2. Y. Aubard, N. Nadores, M.Cantaloube, Br. J. Obstet. Gynaecol. (2000) https://doi.org/10.1016/S0301-2115(00)00282-7

    Google Scholar 

  3. Q. Zhou, W. Chen, L. Xu, R. Kumar, Y. Gui, Z. Zhao, C. Tang, S. Zhu, Ceram. Int. (2018) https://doi.org/10.1016/j.ceramint.2017.12.038

    Google Scholar 

  4. M. Subası, B. Karsli, P. Yarbil, S. Zengin, Am. J. Emerg. Med. (2012) https://doi.org/10.1016/j.ajem.2012.03.011

    Google Scholar 

  5. X.J. Wang, W. Wang, Y.-L. Liu, Sens. Actuators B (2012) https://doi.org/10.1016/j.snb.2012.04.084

    Google Scholar 

  6. A. Nebatti, C. Pflitsch, B. Atakan, Thin Solid Films (2017) https://doi.org/10.1016/j.tsf.2017.07.002

    Google Scholar 

  7. S.K. Swain, I. Jena, Asian J. Chem. (2010) https://doi.org/10.5772/18423

    Google Scholar 

  8. Y. Liu, Polym. J. (2016) https://doi.org/10.1038/pj.2015.132

    Google Scholar 

  9. N.D. Alharbi, M.S. Ansari, N. Salah, S. Khayyat, Z.H. Khan, J. Nanosci. Nanotechnol. (2016) https://doi.org/10.1166/jnn.2016.10629

    Google Scholar 

  10. R.C. J.Khanderi, A.Gurlo Hoffmann, J.J. Schneider, J. Mater. Chem. (2009) https://doi.org/10.1039/b904822g

    Google Scholar 

  11. M. T.Hojati.R.Afzalzadeh Ebrahimi, Mater. Chem. Phys. (2018) https://doi.org/10.1016/j.matchemphys.2017.12.043

    Google Scholar 

  12. N.L.W. Septiani, B.Y. Nugraha, H.K. Dipojono, Appl. Phys. A. (2017) https://doi.org/10.1007/s00339-017-0803-y

    Google Scholar 

  13. A. Ayeshamariam, D. Saravanakkumar, M. Kashif, S. Sivaranjani, B. Ravikuma, Mech. Adv. Mater. Mod. Process. (2016) https://doi.org/10.1186/s40759-016-0010-0

    Google Scholar 

  14. E.C. Dandley, A.J. Taylor, K.S. Duke, M.D. Ihrie, K.A. Shipkowski, G.N. Parsons, J.C. Bonner, Part Fibre Toxicol. (2016) https://doi.org/10.1186/s12989-016-0141-9

    Google Scholar 

  15. M.T. Humayun, R. Divan, L. Stan, A. Gupta, D. Rosenmann, L. Gundel, P.A. Solomon, I. Paprotny, J. Vac. Sci. Technol. B (2015) https://doi.org/10.1116/1.4931694

    Google Scholar 

  16. P. Potirak, W. Pecharapa, W. Techitdheera, J. Exp. Nanosci. (2014) https://doi.org/10.1080/17458080.2013.820848

    Google Scholar 

  17. A. Ramar, T. Soundappan, S. Chen1, M. Rajkumar, S. Ramiah, Int. J. Electrochem. Sci., 7, (2012)

  18. R. Vyas, S. Sharma, P. Gupta, A.K. Prasad, A.K. Tyagi, K. Sachdev, S.K. Sharma, Adv. Mater. Res. (2012) https://doi.org/10.4028/www.scientific.net/AMR.585.235

    Google Scholar 

  19. F. Özütok, S. Demiri, Digest J. Nanomater. Biostruct. 12, 309–315 (2017)

    Google Scholar 

  20. I. Karaduman, E. Er, H. Celikkan, S. Acar, Sens. Actuators B (2015) https://doi.org/10.1016/j.snb.2015.07.063

    Google Scholar 

  21. I. Karaduman, M. Demir, D.E. Yıldız, S. Acar, Phys. Scr. 90, 055802 (2015)

    Article  Google Scholar 

  22. S.H. Largani, M.A. Pasha, Int. Nano Lett. (2017) https://doi.org/10.1007/s40089-016-0197-4

    Google Scholar 

  23. N.K. Allouche, T.B. Nasr, N.T. Kamouna, C. Guasch, Mater. Chem. Phys. (2010) https://doi.org/10.1016/j.matchemphys.2010.05.026

    Google Scholar 

  24. M. Lu, W. Cao, H. Shi, X. Fang, J. Yang, Z. Hou, H. Jin, W. Wang, J. Yuan, M.S. Cao, J. Mater. Chem. A (2014) https://doi.org/10.1039/c4ta01715c

    Google Scholar 

  25. F. Avilés, J.V. Cauich-Rodríguez, J.A. Rodríguez-González, A. May-Pat, Express Polym. Lett. 5(9), 766–776 (2011)

    Article  Google Scholar 

  26. R. Das, M.E. Ali, S.B.A. Hamid, M.S.M. Annuar, S. Ramakrishna, J. Nanomater. (2014) https://doi.org/10.1155/2014/945172

    Google Scholar 

  27. B.-Y. Wang, D.-S. Lim, Y.-J. Oh, Jpn. J. Appl. Phys. 52, 101103 (2013)

    Article  Google Scholar 

  28. M. Narjinary, P. Rana, A. Sen, M. Pal, Mater. Des. 115, 158–164 (2017)

    Article  Google Scholar 

  29. H. Kim, M. Hong, H.W. Jang, S. Yoon, H. Park, Thin Solid Films (2013) https://doi.org/10.1016/j.tsf.2012.07.062

    Google Scholar 

  30. S. Maity, N. Sankar Das, K. Kumar, Chattopadhyay, Phys. Status Solidi B 250(9), 1919–1925 (2013)

    Article  Google Scholar 

  31. E.T. Mombeshora, P.G. Ndungu, A.L. Leigh Jarvis, V.O. Nyamori, Int. J. Energy Res. 41, 1182–1201 (2017)

    Article  Google Scholar 

  32. Q.-Q. Fan, Z.-Y. Qin, X. Liang, L. Li, W.-H. Wu, M.-F. Zhua, J. Exp. Nanosci. 5(4), 337–347 (2010)

    Article  Google Scholar 

  33. K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y.E. Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bölz, G. Pérez, M. Jesdinszki, M. Lindner, Z. Scheuerer, S. Castelló, M. Schmid, Nanomaterials (2017) https://doi.org/10.3390/nano7040074

  34. S. Galioglu, I. Karaduman, T. Çorlu, B. Akata, M.A. Yıldırım, A. Ateş, S. Acar, J. Mater. Sci. 29(2), 1356–1368 (2018)

    Google Scholar 

  35. S.B. Naghadeh, S. Vahdatifar, Y. Mortazavi, A.A. Khodadadi, A.Abbasi, Sen. Actuators B (2015) https://doi.org/10.1016/j.snb.2015.09.088

    Google Scholar 

  36. Y. C.Dai.C. Chen.C.Kuo Wu, Sensors (2010) https://doi.org/10.3390/s100301753

  37. R. Ionescu, E.H. Espinosa, R. Leghrib, A. Felten, J.J. Pireaux, R. Erni, G. Van Tendeloo, C.Bittencourt, N. Canellas, E. Llobet, Sensors and Actuators B (2008) https://doi.org/10.1016/j.snb.2007.11.001

  38. D. Han, L. Zhai, F. Gu, Z. Wang, Sens. Actuators B 262, 655–663 (2018)

    Article  Google Scholar 

  39. S. Benkara, S. Zerkout, H. Ghamrid, Mater. Sci. Semicond. Process. 16(5), 1271–1279 (2013)

    Article  Google Scholar 

  40. G. Karim-Nezhad, A. Sarkary, Z. Khorablou, P.S. Dorraji, Iran. J. Pharm. Res. 17(1), 52–62 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Özütok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özütok, F., Er, I.K., Acar, S. et al. Enhancing the Co gas sensing properties of ZnO thin films with the decoration of MWCNTs. J Mater Sci: Mater Electron 30, 259–265 (2019). https://doi.org/10.1007/s10854-018-0288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0288-2

Navigation