Skip to main content
Log in

Studies on bandgap tuning of visible light active heterojunction CuO/ZnO nanocomposites for DSSC application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hetero-junction CuO/ZnO nanocomposites have been synthesized by simple solution based two-step method in the weight ratios 1:3, 1:2 and 1:1. The crystallite phases of the constituent nanomaterials are confirmed by X-ray diffraction. Increase of CuO content shows significant changes in the absorption spectra with exciton and plasmon related bands of ZnO and CuO, respectively. The compositional analysis and surface chemical states have been probed using X-ray photo electron spectroscopy (XPS). The bandgap is found to decrease with the increase of CuO content. The hybrid system is found to be suitable for absorbing a wide region of incident light with its enhanced absorption characteristics. The synthesized composites show suppression of the broad green band emission from ZnO near to the plasmon band of CuO, enhancing the charge separation which can further minimize charge loss due to recombination. The shift and asymmetry related to Raman bands give a clear idea about the crystallinity and coupling between phonon and continuum level created by the CuO. This coupled system could serve as an efficient photoanode material for dye sensitized solar cells with enhanced efficiency. Among the three composites, 2:1 sample exhibits maximum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Dhara, B. Show, A. Baral, S. Chabri, A. Sinha, N.R. Bandyopadhyay, N. Mukherjee, Sol. Energy 136, 327–332 (2016)

    Article  CAS  Google Scholar 

  2. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Mater. Today 18, 155–162 (2015)

    Article  CAS  Google Scholar 

  3. M.C. Scharber, N.S. Sariciftci, Prog. Polym. Sci. 38, 1929–1940 (2013)

    Article  CAS  Google Scholar 

  4. Y. Yuan, T.J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang, Nat. Mater. 10, 296–302 (2011)

    Article  CAS  Google Scholar 

  5. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897–903 (2014)

    Article  CAS  Google Scholar 

  6. D. Liu, T.L. Kelly, Nat. Photon. 8, 133–138 (2014)

    Article  CAS  Google Scholar 

  7. B. Ghosh, M. Das, P. Banerjee, S. Das, Semicond. Sci. Technol. 24, 1–7 (2004)

    Google Scholar 

  8. I. Hod, A. Zaban, Langmuir 30, 7264–7273 (2014)

    Article  CAS  Google Scholar 

  9. R. Jose, V. Thavasi, S. Ramakrishna, J. Am. Ceram. Soc. 92, 289–301 (2009)

    Article  CAS  Google Scholar 

  10. Z.L. Wang, A C S. Nano 2, 1987–1992 (2008)

    Article  CAS  Google Scholar 

  11. M. Premanathan, K. Karthikeyan, K. Jayasubramanian, G. Manivannan, Nanomed. Nanotechnol. Bio. Med. 7, 184 (2011)

    Article  CAS  Google Scholar 

  12. H.F. Liu, A. Huang, S. Tripathy, S.J. Chua, J. Raman Spectrosc 42, 2179 (2011)

    Article  CAS  Google Scholar 

  13. Y.S. Wang, P.J. Thomas, P. O’Brien, J. Phys. Chem. B 110, 21412 (2006)

    Article  CAS  Google Scholar 

  14. F.W. Wise, Acc. Chem. Res. 33, 773 (2000)

    Article  CAS  Google Scholar 

  15. H.K. Yadav, V. Gupta, K. Sreenivas, S.P. Singh, B. Sundarakannan, R.S. Katiyar, Phys. Rev. Lett. 97, 085502 (2006)

    Article  Google Scholar 

  16. L. Xu, Y. Zhou, Z. Wu, G. Zheng, J. He, Y. Zhou, J. Phys. Chem. of Solids 106, 29–36 (2017)

    Article  CAS  Google Scholar 

  17. S. Harish, J. Archana, M. Sabarinathan, M. Navaneethan, K.D. Nisha, S. Ponnusamy, C. Muthamizhchelvan, H. Ikeda, D.K. Aswal, Y. Hayakawa, J. Appl. Sur. Sci. 418, 103–112 (2017)

    Article  CAS  Google Scholar 

  18. P. Pawinrat, O. Mekasuwandumrong, J. Panpranot, Catal. Commun. 10, 1380–1385 (2009)

    Article  CAS  Google Scholar 

  19. A. Kotta, S.A. Ansari, N. Praveen, J. Mat. Sci: Mater. Electron. 29, 1–9 (2018)

    Google Scholar 

  20. R. Udayabhaskar, B. karthikeyan, J. Appl. Phys. 115, 154303 (2014)

    Article  Google Scholar 

  21. I. Bozovic, Phys. Rev. B 42, 1969 (1990)

    Article  CAS  Google Scholar 

  22. H. Fan, B. Zou, Y. Liu, S. Xie, Nanotechnol. 17, 1099 (2006)

    Article  CAS  Google Scholar 

  23. W. Wang, Q. Zhou, X. Fei, Y. He, P. Zhang, G. Zhang, L. Peng, W. Xie, Cryst. Eng. Comm. 12, 2232 (2010)

    Article  CAS  Google Scholar 

  24. D. Zhang, Transition Met. Chem. 35, 689–694 (2010)

    Article  CAS  Google Scholar 

  25. W. Zhaojie, L. Zhenyu, Z. Hongnan, W. Ce, Catal. Commum. 11, 257–260 (2009)

    Article  Google Scholar 

  26. X. Juan, Z. Zhao, L. Yiwei, H. Yongjing, L. Xiaoyan, L. Meixia, W. Yu, Ceram. Inter. 40, 12519–12524 (2014)

    Article  Google Scholar 

  27. M.H. Habibi, B. Karimi, M. Zendehdel, M. Habibi, Spectroch. Acta A 116, 374–380 (2013)

    Article  CAS  Google Scholar 

  28. C.H. Ashok, K. Venketeswara Rao, C.H. Shilpa Chakra, J. Adv. Chem. Sci. 2, 223–226 (2016)

    Google Scholar 

  29. N. Abraham, A. Rufus, C. Unni, D. Philip, Spectroch. Acta A 200, 116–126 (2018)

    Article  CAS  Google Scholar 

  30. L. Jing, W. WenJun, Y. JiaBao, T. Jin, L. YiTao, H. JianLi, Sci. China Chem. 54, 699–706 (2011)

    Google Scholar 

  31. K. Mageshwari, D. Nataraj, T. Pal, R. Sathyamoorthy, J. Park, J. Alloy. Compd. 625, 362–370 (2015)

    Article  CAS  Google Scholar 

  32. S. Wei, Y. Chen, Y. Ma, Z. Shao, J. Mol. Catal. A 331, 112–116 (2010)

    Article  CAS  Google Scholar 

  33. A. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  34. M. Giahi, N. Badalpoor, N. Habii, ,H. Taghavi, Bull. Korean Chem. Soc. 34, 2176 (2013)

    Article  CAS  Google Scholar 

  35. N. Widiarti, J.K. Sae, S. Wahyuni, IOP Conf. Series 172, 12036 (2017)

    Article  Google Scholar 

  36. I.C. Chen, Y.M. Liou, J. Yang, T.Y. Shieh, J. Raman Spectrosc. 42, 339 (2011)

    Article  CAS  Google Scholar 

  37. H. Li, L. Zhu, M. Xia, N. Jin, K. Luo, Y. Xie, Mater. Lett. 174, 99–101 (2016)

    Article  CAS  Google Scholar 

  38. B.A. Gizhevskii, Y.P. Sukhorukov, L.V. Nomerovannaya, A.A. Makhnev, Y.S. Ponosov, A.V. Telegin, E.V. Mostovshchikova, Solid state Phenomena 168, 317–320 (2011)

    Google Scholar 

  39. M.Y. Guo, A.M.C. Ng, F. Liu, A.B. Djurisic, W.K. Chan, H. Su, K.S. Wong, J. Phys. Chem. C 115, 11095–11101 (2011)

    Article  CAS  Google Scholar 

  40. B.A. Gizhevskii, Y.P. Sukhorukov, N.N. Loshkareva, A.S. Moskin, E.V. Zenkov, E.A. Kozlov, J. Phys.: Condens. Matter 17, 499 (2005)

    CAS  Google Scholar 

  41. W. Wang, Q. Zhou, X. Fei, Y. He, P. Zhang, G. Zhang, L. Peng, W. Xie, Cryst. Eng. Commn. 12, 2232 (2010)

    Article  CAS  Google Scholar 

  42. M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, J. Alloys Comp. 494, 275–284 (2010)

    Article  CAS  Google Scholar 

  43. S. Das, V.C. Srivastava, J. Nano Res. 35, 21–26 (2016)

    Article  CAS  Google Scholar 

  44. Z.H. Bakr, Q. Wali, J. Ismail, N.K. Elumalai, A. Uddin, R. Jose, Electrochim. Acta 263, 524–532 (2018)

    Article  CAS  Google Scholar 

  45. P. Lu, W. Zhou, Y. Li, J. Wang, P. Wu, Appl. Sur. Sci. 399, 296–302 (2017)

    Google Scholar 

  46. M.T. Qamar, M. Aslam, I.M.I. Ismail, N. Salah, A. Hameed, ACS Appl. Mater. Interfaces 7, 8757 (2015)

    Article  CAS  Google Scholar 

  47. M. Balkanski, K.P. Jain, R. Beserman, M. Jouanne, Phys. Rev. B 12, 4328 (1975)

    Article  CAS  Google Scholar 

  48. M. Chandrasekhar, J.B. Renucci, M. Cardona, Phys. Rev. B 17, 1623 (1978)

    Article  CAS  Google Scholar 

  49. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 1946–1953 (2012)

    Article  CAS  Google Scholar 

  50. K. Vijayalakshmi, K. Karthick, J. Mater. Sci. Mater. Electron. 25, 832–836 (2014)

    Article  CAS  Google Scholar 

  51. A. Hamrouni, N. Moussa, F. Parrino, A.D. Paola, A. Houas, L. Palmisano, J. Mol. Catal. A 390, 133–141 (2014)

    Article  CAS  Google Scholar 

  52. S. Xu, L. Fu, T.S.H. Pham, A. Yu, F. Han, L. Chen, Ceram. Int. 41, 4007–4013 (2015)

    Article  CAS  Google Scholar 

  53. P.K. Sharma, M. Kumar, J. Nanopart. Res. 13, 1629–1637 (2011)

    Article  CAS  Google Scholar 

  54. L. Xu, Y. Zhou, Z. Wu, G. Zheng, J. He, Y. Zhou, J. Phys. Chem. Solids 106, 29–36 (2017)

    Article  CAS  Google Scholar 

  55. A.B. Djurisic, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K.G. Rao, W.K. Chan, H.F. Lui, C. Surya, Adv. Funct. Mater. 14, 856–864 (2004)

    Article  CAS  Google Scholar 

  56. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, A.N. Stephen, Mat. Sci. Eng. C 33, 91–98 (2013)

    Article  CAS  Google Scholar 

  57. A.S. Lanje, S.J. Sharma, R.S. Ningthoujam, J.S. Ahn, R.B. Pode, Adv. Powder Technol. 24, 331–335 (2013)

    Article  CAS  Google Scholar 

  58. M.M. Rahman, S.B. Khan, M. Faisal, M.A. Rub, A.O. Al-Youbi, A.M. Asiri, Talanta 99, 924–931 (2012)

    Article  CAS  Google Scholar 

  59. J. Wang, W. Zhou, P. Wu, J. Nanopart. Res. 16, 1–8 (2014)

    Google Scholar 

  60. O. Lupan, G.A. Emelchenko, V.V. Ursaki, G. Chai, A.N. Redkin, A.N. Gruzintsev, Mater. Res. Bull. 45, 1026–1032 (2010)

    Article  CAS  Google Scholar 

  61. C.C. Chusuei, M.A. Brookshier, D.W. Goodman, Langmuir 15, 2806–2808 (1999)

    Article  CAS  Google Scholar 

  62. K. Ravichandran, N. Chidhambaram, S. Gobalakrishnan, J. Phy. Chem. Solids 93, 82–90 (2016)

    Article  CAS  Google Scholar 

  63. A. `K. M. Arora, T.R. Rajalekshmi, V. Ravindran, Sivasubramanian, J Raman Spectrosc. 38, 604–617 (2007)

    Article  Google Scholar 

  64. M. Rajalakshmi, A.K. Arora, B.S. Bendre, S. Mahamuni, J. Appl. Phys. 87, 2445 (2000)

    Article  CAS  Google Scholar 

  65. K.A. Alim, V.A. Fonoberov, A.A. Balandin, Appl. Phys. Lett. 86, 053103 (2005)

    Article  Google Scholar 

  66. H.K. Yadav, K. Sreenivas, V. Gupta, R.S. Katiyar, J. Raman Spectrosc. 40, 381 (2009)

    Article  CAS  Google Scholar 

  67. U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  CAS  Google Scholar 

  68. J.M. Hancock, W.M. Rankin, T.M. Hammad, J.S. Salem, K. Chesnel, R.G. Harrison, J. Nanosci. Nanotechnol. 15, 3809–3815 (2015)

    Article  CAS  Google Scholar 

  69. Q. Wang, S. Ito, M. Gr€atzel, F. Fabregat-Santiago, I. Mora-Ser_o, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B 110, 25210–25221 (2006)

    Article  CAS  Google Scholar 

  70. Q. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G. Cao, Angew. Chem. Int. Ed. 47, 2402–2406 (2008)

    Article  CAS  Google Scholar 

  71. H.Y. Chen, D.B. Kuang, C.Y. Su, J. Mater. Chem. 22, 15475–15489 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge MG University, Kottayam for the help in TEM studies, Department of OptoElectronics, University of Kerala, Thiruvananthapuram and IISER Thiruvananthapuram for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelsa Abraham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, N., Unni, C. & Philip, D. Studies on bandgap tuning of visible light active heterojunction CuO/ZnO nanocomposites for DSSC application. J Mater Sci: Mater Electron 29, 21002–21013 (2018). https://doi.org/10.1007/s10854-018-0245-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0245-0

Navigation