Skip to main content
Log in

Sintering dependent Ca2+ solubility in barium titanate synthesized by sol–gel auto combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the preparation of ferroelectric Ba0.7Ca0.3TiO3 (BCT) ceramics by sol–gel auto combustion technique and its specific functional properties. The structural, dielectric and ferroelectric properties of BCT are strongly depending on the sintering temperature which also improves the phase purity and crystalline quality of the system. The formation of single-phase BCT is realized by sintering at 1450 °C for 4 h. suggesting the solubility limit of Ca2+ cation. Grain size and relative density are increased as the sintering temperature increased. The Rietveld refinement technique is employed for the detailed crystal structural analysis. The temperature and frequency dependent dielectric properties are investigated; the measured dielectric constant is εr = 2680 at the transition temperature Tc=120 °C for the single phase ferroelectric BCT. Sintering and electrical poling improved the shape of the hysteresis curve and reduced the leakage current. Electrical conduction mechanism is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Uchino, Advanced Piezoelectric Materials: Science and Technology (Woodhead Publishing, Philadelphia, 2010)

    Book  Google Scholar 

  2. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic press, London, 1971)

    Book  Google Scholar 

  3. J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, J. Am. Ceram. Soc. 92(6), 1153 (2009)

    Article  Google Scholar 

  4. S. Priya, S. Nahm, Lead free pizoelectrics (Springer, New York, 2012)

    Book  Google Scholar 

  5. O. Mator, O.M. Posada, N.S. Hondow, C. Walti, M. Saunders, C.A. Murray, R.M.D. Brydson, S.J. Milne, A.P. Brown, J. Phys. Conf. Ser. 644, 012037 (2015)

    Article  Google Scholar 

  6. M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Sens. Actuators B 241, 1170 (2017)

    Article  CAS  Google Scholar 

  7. X. Chao, J. Wang, J. Pu, S. Zhang, Z. Yang, Sens. Actuators A 237, 9 (2016)

    Article  CAS  Google Scholar 

  8. L. Cheng, M. Yuan, L. Gu, Z. Wang, Y. Qin, T. Jing, Z.L. Wang, Nano Energy 15, 598 (2015)

    Article  CAS  Google Scholar 

  9. N.R. Alluri, B. Saravanakumar, S.J. Kim, ACS Appl. Mater. Interfaces 7, 9831 (2015)

    Article  CAS  Google Scholar 

  10. X.N. Zhu, W. Zhang, X.M. Chen, AIP Adv. 3, 082125 (2013)

    Article  Google Scholar 

  11. Y. Yu, H. Zou, Q.F. Cao, X.S. Wang, Y.X. Li, X. Yao, Ferroelectrics 487, 77 (2015)

    Article  CAS  Google Scholar 

  12. S. Yasmin, S. Choudhury, M.A. Hakim, A.H. Bhuiyan, M.J. Rahman, J. Mater. Sci. Technol. 27(8), 759 (2011)

    Article  CAS  Google Scholar 

  13. S.K. Jo, J.S. Park, Y.H. Han, J. Alloys Compd. 501, 259 (2010)

    Article  CAS  Google Scholar 

  14. M. Ganguly, S.K. Rout, P.K. Barhai, C.W. Ahn, I.W. Kim, Phase Transit. 87(2), 157 (2014)

    Article  CAS  Google Scholar 

  15. Y. Leyet, R. Pena, Y. Zulueta, F. Guerrero, J.A. Rivera, Y. Romaguera, J. P. Cruz, Mater. Sci. Eng. B 177, 832 (2012)

    Article  CAS  Google Scholar 

  16. A.K. Kalyani, A. Senyshyn, R. Ranjan, J. Appl. Phys. 114, 014102 (2013)

    Article  Google Scholar 

  17. N. Maso, H. Beltran, E. Cordoncillo, A.A. Flores, P. Escribano, D.C. Sinclair, A.R. West, J. Mater. Chem. 16, 3114 (2006)

    Article  CAS  Google Scholar 

  18. N. Maso, H. Beltran, E. Cordoncillo, P. Escribano, A.R. West, J. Mater. Chem. 16, 1626 (2006)

    Article  CAS  Google Scholar 

  19. T. Mitsui, W.B. Westphal, Phys. Rev. 124(5), 1354 (1961)

    Article  CAS  Google Scholar 

  20. A.J. Bell, J. Eur. Ceram. Soc. 28, 1307 (2008)

    Article  CAS  Google Scholar 

  21. M. McQuarrie, F.W. Behnke, J. Am. Ceram. Soc. 37, 539 (1954)

    Article  CAS  Google Scholar 

  22. A. Mazur, C. Verber, O.F. Schirmer, C. Kuper, H. Hesse, Radiat. Effect Defects Solids 150, 281 (1999)

    Article  Google Scholar 

  23. H. Veenhuis, T. Borger, K. Peithmann, M. Flaspohler, K. Buse, R. Pankrath, H. Hesse, E. Kratzi, Appl. Phys. B 70, 797 (2000)

    Article  CAS  Google Scholar 

  24. C.H. Kuper, R. Pankrath, H. Hesse, Appl. Phys. A 65, 301 (1997)

    Article  CAS  Google Scholar 

  25. X. Wang, C.N. Xu, H. Yamada, K. Nishikubo, X.G. Zheng, Adv. Mater. 17, 1254 (2005)

    Article  CAS  Google Scholar 

  26. T. Mazon, A.C. Hernandes, A.G. Souza, A.P.A. Moraes, A.P. Ayala, P.T.C. Freire, J. Mendes, J. Appl. Phys. 97, 104113 (2005)

    Article  Google Scholar 

  27. X. Wang, H. Yamada, C.N. Xu, Appl. Phys. Lett. 86, 022905 (2005)

    Article  Google Scholar 

  28. P.S.R. Krishna, D. Pandey, V.S. Tiwari, R. Chakravarthy, B.A. Dasannacharya, Appl. Phys. Lett. 62(3), 231 (1993)

    Article  CAS  Google Scholar 

  29. V.S. Tiwari, N. Singh, D. Pandey, J. Am. Ceram. Soc. 77, 1813 (1994)

    Article  CAS  Google Scholar 

  30. Z.Q. Zhuang, M.P. Harmer, D.M. Smyth, R.E. Newnham, Mater. Res. Bull. 22, 1329 (1987)

    Article  CAS  Google Scholar 

  31. W. Zhang, Z. Shen, J. Chen, J. Mater. Sci. 41, 5743 (2006)

    Article  CAS  Google Scholar 

  32. R.S. Silva, L.M. Jesus, T.C. Oliveira, D.V. Sampaio, J.C.A. Santos, A.C. Hernandes, J. Eur. Ceram. Soc. 36, 4023 (2016)

    Article  CAS  Google Scholar 

  33. I.S. Wiza, L. Kozielski, T. Sebastian, Phase Transit. 89(7–8), 803 (2016)

    Article  Google Scholar 

  34. L.Y. Li, X.G. Tang, Mater. Chem. Phys. 115, 507 (2009)

    Article  CAS  Google Scholar 

  35. V.D. Araujo, F.V. Motta, A.P.A. Marques, C.A. Paskocimas, M.R.D. Bomio, E. Longo, J.A. Varela, J. Mater. Sci. 49, 2875 (2014)

    Article  CAS  Google Scholar 

  36. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, J. Alloys Compd. 514, 91 (2012)

    Article  CAS  Google Scholar 

  37. S.N. Tripathy, B.G. Mishra, M.M. Shirolkar, S. Sen, S.R. Das, D.B. Janes, D.K. Pradhan, Mater. Chem. Phys. 141, 423 (2013)

    Article  CAS  Google Scholar 

  38. R.S. Silva, J.C. MPeko, L.C. Fontes, A.C. Hernandes, Mater. Res. 12(3), 287 (2009)

    Article  Google Scholar 

  39. P. Victor, R. Ranjith, S.B. Krupanidhi, J. Appl. Phys. 94(12), 7702 (2003)

    Article  CAS  Google Scholar 

  40. V. Krayzman, I. Levin, J.C. Woicik, F. Bridges, E.J. Nelson, D.C. Sinclair, J. Appl. Phys. 113, 044106 (2013)

    Article  Google Scholar 

  41. V.S. Tiwary, D. Pandey, P.S.R. Krishna, R. Chakravarthy, B.A. Dasannacharya, Phys. B 174(1–4), 112 (1991)

    Article  Google Scholar 

  42. S. Lee, C.A. Randall, Appl. Phys. Lett. 92, 111904 (2008)

    Article  Google Scholar 

  43. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  44. I.S. Park, Y.H. Lee, K.B. Kim, Y. Kim, Nucl. Instrum. Methods Phys. Res. B 284, 44 (2012)

    Article  CAS  Google Scholar 

  45. G.H. Kwei, A.C. Lawson, S.J.L. Billinge, J. Phys. Chem. 97, 2368 (1993)

    Article  CAS  Google Scholar 

  46. S.W. Kwon, D.H. Yoon, J. Eur. Ceram. Soc. 27, 247 (2007)

    Article  CAS  Google Scholar 

  47. V.D. Mote, Y. Purushotam, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  48. M.S. Alkathy, A. Hezam, K.S.D. Manoja, J. Wang, C. Cheng, K. Byrappa, K.C.J. Raju, J. Alloys Compd. 762, 49 (2018)

    Article  CAS  Google Scholar 

  49. H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, D.K. Pradhan, J. Mater. Sci Mater Electron. 29, 6966 (2018)

    Article  CAS  Google Scholar 

  50. X.G. Tang, K.H. Chew, H.L.W. Chan, Acta Mater. 52, 5177 (2004)

    Article  CAS  Google Scholar 

  51. I. Okazaki, K. Nagata, J. Am. Ceram. Soc. 56, 82 (1973)

    Article  CAS  Google Scholar 

  52. W.R. Buessem, L.E. Cross, A.K. Goswami, J. Am. Ceram. Soc. 49, 33 (1966)

    Article  CAS  Google Scholar 

  53. S. Hu, C. Luo, P. Li, J. Hu, G. Li, H. Jiang, W. Zhang, J. Mater. Sci. Mater. Electron. 28, 9322 (2017)

    Article  CAS  Google Scholar 

  54. R. Stanculescu, C.E. Ciomaga, L. Padurariu, P. Galizia, N. Horchidan, C. Capitani, C. Galassi, L. Mitoseriu, J. Alloys Compd. 643, 79 (2015)

    Article  CAS  Google Scholar 

  55. Q. Hu, T. Wang, L. Zhao, L. Jin, Z. Xu, X. Wei, Ceram. Int. 43, 35 (2017)

    Article  CAS  Google Scholar 

  56. S.H. Yoon, M.Y. Kim, D. Kim, J. Appl. Phys. 122, 154103 (2017)

    Article  Google Scholar 

  57. A.K. Singh, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, J. Appl. Phys. 91, 6626 (2002)

    Article  CAS  Google Scholar 

  58. T. Maiti, R. Guo, A.S. Bhalla, Ferroelectrics 425, 4 (2011)

    Article  CAS  Google Scholar 

  59. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8003 (1992)

    Article  CAS  Google Scholar 

  60. S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, Mater Chem. Phys. 112, 858 (2008)

    Article  CAS  Google Scholar 

  61. R.P.S.M. Lobo, N.D.S. Mohallem, R.L. Moreira, J. Am. Ceram. Soc. 78(5), 1343 (1995)

    Article  CAS  Google Scholar 

  62. I. Brajesh, K. Tanwar, M. Abebe, R. Ranjan, Phys. Rev. B 92, 224112 (2015)

    Article  Google Scholar 

  63. X.G. Tang, H.L.W. Chan, J. Appl. Phys. 97, 034109 (2005)

    Article  Google Scholar 

  64. I.E. lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  65. E. Chandrakala, J.P. Praveen, B.K. Hazrab, D. Das, Ceram. Int. 42, 4964 (2016)

    Article  CAS  Google Scholar 

  66. H. Borkar, M. Tomar, V. Gupta, J.F. Scott, A. Kumar, Appl. Phys. Lett. 107, 122904 (2015)

    Article  Google Scholar 

  67. C. Feng, C.H. Yang, S.X. Li, Y.J. Han, X.Q. Hu, F.Y. Jiao, J. Qian, X.B. Du, Ceram. Int. 41, 14179 (2015)

    Article  CAS  Google Scholar 

  68. H.S. Mohanty, T. Dam, H. Borkar, A. Kumar, K.K. Mishra, S. Sen, B. Behera, B. Sahoo, D.K. Pradhan, Ferroelectrics 517, 25 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Smaranika Dash acknowledges Ministry of Human Resource Development, India for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dillip K. Pradhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1060 KB)

Supplementary material 2 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Mohanty, H.S., Bhoi, K. et al. Sintering dependent Ca2+ solubility in barium titanate synthesized by sol–gel auto combustion method. J Mater Sci: Mater Electron 29, 20820–20831 (2018). https://doi.org/10.1007/s10854-018-0224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0224-5

Navigation