Skip to main content
Log in

Effect of sintered temperature on structural and piezoelectric properties of barium titanate ceramic prepared by nano-scale precursors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free piezoelectric ceramics barium titanate has been successfully fabricated by a facile modified (nano-scale precursors) solid phase method. The sintered temperature was employed as the main regulatory factor to control the growth of the grain size and crystallinity of the sample. When the sintered temperature was set as 1350 °C, the pure phase barium titanate ceramics could be prepared with the grain size of about 1 μm. In addition, piezoelectric tests showed that, the samples sintered at this temperature possessed the maximum Ɛr, Pr and d33 values, 3533, 16.24 μC/cm2 and 420 pC/N, respectively. These characteristics make them promising candidates as lead-free piezoelectric ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Saito, H. Takato, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, T. Nagaya, M. Nakamura, Nature 432(84) (2004)

  2. W. Zheng, J. Yu, AIP Adv. 6, 085314 (2016)

    Article  Google Scholar 

  3. K. Bian, Q. Gu, K. Zhu, R. Zhu, J. Wang, J. Liu, J. Qiu, J. Mater. Sci. 27, 8573 (2016)

    Google Scholar 

  4. D.W. Wang, H.B. Jin, J. Yuan, B.L. Wen, Q.L. Zhao, D.Q. Zhang, M.S. Cao, Chin. Phys. Lett 27, 047701 (2010)

    Article  Google Scholar 

  5. Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys 75, 454 (1994)

    Article  Google Scholar 

  6. P. Jarupoom, G. Rujijanagul, J. Appl. Phys 114, 027018 (2013)

    Article  Google Scholar 

  7. S.K. Ghosh, M. Ganguly, S.K. Rout, S. Chanda, T.P. Sinha, Solid State Sci. 30, 68 (2014)

    Article  Google Scholar 

  8. Z.Y. Shen, J.F. Li, J. Ceram. Soc. Jpn. 118, 940 (2010)

    Article  Google Scholar 

  9. I. Fujii, M. Ugorek, S. Trolier-McKinstry, J. Appl. Phys 107, 104116 (2010)

    Article  Google Scholar 

  10. F.Q. Guo, B.H. Zhang, W. Wang, H.M. Chen, J. Inorg. Mater. 27, 277 (2012)

    Article  Google Scholar 

  11. H.W. Zhang, C. Chen, X.Y. Zhao, H. Deng, L. Li, D. Lin, X.B. Li, B. Ren, H. Luo, J. Yan, Appl. Phys. Lett. 103, 212906 (2013)

    Article  Google Scholar 

  12. S. Bhandari, N. Sinha, G. Ray, B. Kumar, CrystEngComm 16, 4459 (2014)

    Article  Google Scholar 

  13. S. Bhandari, B. Kumar, Cryst. Growth Des. 15, 867 (2015)

    Article  Google Scholar 

  14. F.Q. Guo, B.H. Zhang, Z.X. Fan, X. Peng, Q. Yang, Y.X. Dong, R.R. Chen, J. Mater. Sci. 27, 5967 (2016)

    Google Scholar 

  15. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics. (Academic Press, London, 1971)

    Google Scholar 

  16. X. Zhao, W. Liu, W. Chen, S. Li, Ceram. Int. 41, S111 (2015)

    Article  Google Scholar 

  17. Y. Wu, J. Zhang, Y. Tan, P. Zheng, Ceram. Int. 42, 9815 (2016)

    Article  Google Scholar 

  18. J.L. Zhang, P.F. Ji, Y.Q. Wu, X. Zhao, Y.Q. Tan, C.L. Wang, Appl. Phys. Lett. 104, 222909 (2014)

    Article  Google Scholar 

  19. Y. Huan, X. Wang, J. Fang, L. Li, I.W. Chen, J. Am. Ceram. Soc. 96, 3369 (2013)

    Article  Google Scholar 

  20. J.C. Wang, P. Zheng, R.Q. Yin, L.M. Zheng, J. Du, L. Zheng, J.X. Deng, K.X. Song, H.B. Qin, Ceram. Int. 41, 14165 (2015)

    Article  Google Scholar 

  21. W. Liu, J. Xu, R. Lv, Y. Wang, H. Xu, J. Yang, Ceram. Int. 40, 20059(2014)

    Google Scholar 

  22. Y. Liu, Z. Wang, W. Huang, Appl. Surf. Sci. 389, 760 (2016)

    Article  Google Scholar 

  23. P.A. Jha, A.K. Jha, Curr. Appl. Phys. 13, 1413 (2013)

    Article  Google Scholar 

  24. X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, J. Eur. Ceram. Soc. 36, 3995 (2016)

    Article  Google Scholar 

  25. R. Hayati, M.A. Bahrevar, T. Ebadzadeh, V. Rojas, N. Novak, J. Koruza, J. Eur. Ceram. Soc. 36, 3391 (2016)

    Article  Google Scholar 

  26. K. Brajesh, M. Abebe, R. Ranjan, Phys. Rev. B 94, 104108 (2016)

    Article  Google Scholar 

  27. B. Chen, F.H. Liao, H. Jiao, X.P. Jing, Phase Transit. 86, 380 (2013)

    Article  Google Scholar 

  28. A. Beauger, J.C. Mutin, J.C. Niepce, J. Mater. Sci. 18, 3041 (1983)

    Article  Google Scholar 

  29. E. Chandrakala, J.P. Praveen, B.K. Hazra, D. Das, Ceram. Int. 42, 4964 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11602159, 51205276, and 61474079), China Postdoctoral Science Foundation (Grant No. 2013T60268), Science and Technology Major Project of the Shanxi Science and Technology Department (Grant No. 20121101004), Shanxi Province Science Foundation (Grant Nos. 2015021092 and 2016011039), Special talents in Shanxi Province (Grant No. 201605D211020) and Scientific & Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2016136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Luo, C., Li, P. et al. Effect of sintered temperature on structural and piezoelectric properties of barium titanate ceramic prepared by nano-scale precursors. J Mater Sci: Mater Electron 28, 9322–9327 (2017). https://doi.org/10.1007/s10854-017-6670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6670-7

Keywords

Navigation