Skip to main content
Log in

Understanding the sensing mechanism of carbon nanoparticles: MnO2–PVP composites sensors using in situ FTIR—online LCR meter in the detection of ethanol and methanol vapor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An in situ FTIR combined with online LCR method was used to study the sensing mechanism of the prepared sensors at room temperature. Our study revealed that the sensing mechanism for the sensors that were responsive was a total decomposition of the analytes, ethanol and methanol, through a total oxidation process. Carbon nanoparticles (CNPs; candle soot), manganese dioxide and polyvinylpyrrolidone (PVP) were used as sensing materials to fabricate five various sensors for the detection of ethanol and methanol vapor in a closed chamber. Different sensors were prepared by mixing variable ratio of the sensing materials. Sensor A was prepared by mixing all three sensing materials; CNPs:MnO2:PVP (1:1:3 mass ratio) in dichloromethane (as a solvent), while sensor B, C, D and E were prepared by mixing two of the materials; CNPs:MnO2 (1:1 mass ratio), MnO2:PVP (1:3 mass ratio), CNPs:PVP (1:3 mass ratio) and MnO2 (only), respectively. The sensing materials were characterized using Brunauer–Emmett–Teller, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The sensing experiments were carried out at room temperature, for both ethanol and methanol vapor and the concentrations were varied from 345 to 4146 and 498 to 5983 ppm, respectively. Sensor C was the most sensitive sensor to ethanol with the sensitivity of 0.195 Ω ppm−1 and sensor D was the most sensitive for methanol with a sensitivity of 0.389 Ω ppm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, Sensors 12, 9635 (2012)

    Article  Google Scholar 

  2. Z. Li, J. Yi. Sens. Actuators B 243, 96 (2017)

    Article  Google Scholar 

  3. L.A. Patil, L.S. Sonawane, D.G. Patil, J. Mod. Phys. 2, 1215 (2011)

    Article  Google Scholar 

  4. J. Tang, J. Fang, Y. Liang, B. Zhang, Y. Luo, X. Liu, Z. Li, X. Cai, J. Xian, H. Lin, W. Zhu, Sens. Actuators B 273, 1816 (2018)

    Article  Google Scholar 

  5. A. Mirzaei, S.G. Leonardi, G. Neri, Ceram. Int. 42, 15119 (2016)

    Article  Google Scholar 

  6. A.W. Boots, J.J. van Berkel, J.W. Dallinga, A. Smolinska, E.F. Wouters, F.J. van Schooten, J. Breath Res. 6, 1 (2012)

    Article  Google Scholar 

  7. T.Y. Tiong, C.F. Dee, A.A. Hamzah, B.Y. Majlis, S.A. Rahman, Sens. Actuators B 202, 1322 (2014)

    Article  Google Scholar 

  8. C. Tasaltin, F. Basarir, Sens. Actuators B 194, 173 (2014)

    Article  Google Scholar 

  9. M. Narjinary, P. Rana, A. Sen, M. Pal, Mater. Des. 115, 158 (2017)

    Article  Google Scholar 

  10. T. Sarkar, P.M. Ashraf, S. Srinives, A. Mulchandani, Sens. Actuators B 268, 115 (2018)

    Article  Google Scholar 

  11. L. Liu, D. Zhang, Q. Zhang, X. Chen, G. Xu, Y. Lu, Q. Liu, Biosens. Bioelectron. 93, 94 (2017)

    Article  Google Scholar 

  12. B.B. Cunha, M.W. Greenshields, M.A. Mamo, N.J. Coville, I.A. Hümmelgen, J. Mater. Sci. Mater. Electron. 26, 4198 (2015)

    Article  Google Scholar 

  13. Y. Wang, L. Jiang, Y. Wang, Electrochim. Acta 210, 190 (2016)

    Article  Google Scholar 

  14. L.E. Murr, K.F. Soto, Mater. Charact. 55, 50, (2015)

    Article  Google Scholar 

  15. R.R. Attarde, D.R. Patil, Int. J. Phys. Appl. Sci. 3, 31 (2016)

    Google Scholar 

  16. L. Khoshrooa, A. Hosseinzadehb, M. Sobhani-Nasabc, H. Rahimi-Nasrabadid, Ehrlichf, J. Electroanal. Chem. 823, 61 (2018)

    Article  Google Scholar 

  17. S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, ‎J. Mol. Struct. 1157, 607 (2018)

    Article  Google Scholar 

  18. W. Zhang, C. Zeng, M. Kong, Y. Pan, Z. Yang, Sens. Actuators B 162, 292 (2012)

    Article  Google Scholar 

  19. Z. Ma, T. Zhao, Electrochim. Acta 201, 165 (2016)

    Article  Google Scholar 

  20. H. Liu, Z. Hu, Y. Su, H. Ruan, R. Hu, L. Zhang, Appl. Surf. Sci. 392, 777 (2017)

    Article  Google Scholar 

  21. C. Liu, S.T. Navale, Z.B. Yang, M. Galluzzi, V.B. Patil, P.J. Cao, R.S. Mane, F.J. Stadler, J. Alloys Compd. 727, 362 (2017)

    Article  Google Scholar 

  22. H.D. Zhang, X. Yan, Z.H. Zhang, G.F. Yu, W.P. Han, J.C. Zhang, Y.Z. Long, Int. J. Polym. Sci., 2016, 1 (2016)

    Google Scholar 

  23. H. Bai, G. Shi, Sensors 7, 267 (2007)

    Article  Google Scholar 

  24. M.M. Aria, A. Irajizad, F.R. Astaraei, S.P. Shariatpanahi, R. Sarvari, Measurement 78, 283 (2016)

    Article  Google Scholar 

  25. A. Sidek, R. Arsat, X. He, K. Kalantar-Zadeh, W. Wlodarski, Int. Conf. IEEE 2012, 1 (2012)

    Google Scholar 

  26. L.C. Wang, L. He, Q. Liu, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, K.N. Fan, Appl. Catal. 344, 150 (2008)

    Article  Google Scholar 

  27. C.J. Raj, B.C. Kim, B. Cho, W. Cho, S. Kim, S.Y. Park, K.H. Yu, Mater. Sci. 93, 241 (2016)

    Google Scholar 

  28. E.D. Dikio, Int. J. Electrochem. Sci. 6, 2214 (2011)

    Google Scholar 

  29. K. Ramya, J. John, B. Manoj, Int. J. Electrochem. Sci. 8, 9421 (2013)

    Google Scholar 

  30. G. Cabello, R.A. Davoglio, Appl. Catal B., 218, 192 (2017)

    Article  Google Scholar 

  31. A. Bello, O.O. Fashedemi, M. Fabiane, J.N. Lekitima, K.I. Ozoemena, N. Manyala, Electrochim. Acta 114, 48 (2013)

    Article  Google Scholar 

  32. X. Bai, X. Tong, Y. Gao, W. Zhu, C. Fu, J. Ma, T. Tan, C. Wang, Y. Luo, H. Sun, Electrochim. Acta 281, 525 (2018)

    Article  Google Scholar 

  33. X. Wang, Y. Li, Chem. Commun. (2002). https://doi.org/10.1039/B111723H

    Google Scholar 

  34. M.A. Hossain, S. Islam, Am. J. Nanosci. Nanotechnol. 1, 52 (2013)

    Article  Google Scholar 

  35. S.S. Mothoa, Doctoral Thesis, 2010, University of the Western Cape, South Africa

  36. Q. Ma, J. Wang, X. Dong, W. Yu, G. Liu, Chem. Eng. J. 222, 16 (2013)

    Article  Google Scholar 

  37. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, J. Mater. Res. Technol. (2018). https://doi.org/10.1016/j.jmrt.2018.04.023

    Google Scholar 

  38. Y. Ying, D. Liu, Fuel 205, 109 (2017)

    Article  Google Scholar 

  39. P.V. Gnaneshwar, P. Sabarikirishwaran, Int J Chemtech 7, 1465 (2015)

    Google Scholar 

  40. J. Deng, B. Yu, Z. Lou, L. Wang, R. Wang, T. Zhang, Sens. Actuators B 184, 21 (2013)

    Article  Google Scholar 

  41. L.A. Horsfall, D.C. Pugh, C.S. Blackman, I.P. Parkin, J. Mater. Chem. A 5, 2172 (2017)

    Article  Google Scholar 

  42. L.M. Madeira, M.F. Portela, Catal. Rev.-Sci. Eng. 44, 247 (2002)

    Article  Google Scholar 

  43. N. Barsan, U. Weimar, J. Electroceram. 7, 143 (2001)

    Article  Google Scholar 

  44. F. Hellegouarc’h, F. Arefi-Khonsari, R. Planade, J. Amououx, Sens. Actuators B 73, 27 (2001)

    Article  Google Scholar 

  45. R.S. Khadayate, R.B. Waghulde, M.G. Wankhede, J.V. Sali, P.P. Patil, Bull. Mater. Sci. 30, 129 (2007)

    Article  Google Scholar 

  46. C.K. Tan, D.J. Blackwood, Sens. Actuators B 71, 184 (2000)

    Article  Google Scholar 

  47. K. Hirayama, Y. Sakai, K. Kameoka, K. Noda, R. Naganawa, Sens. Actuators B 86, 20 (2002)

    Article  Google Scholar 

  48. H. Bai, G. Shi, Sensors 7(3), 267 (2007)

    Article  Google Scholar 

  49. J. Zhang, A. Boyd, A. Tselev, M. Paranjape, P. Barbara, Appl. Phys. Lett. 88(1), 123112 (2006)

    Article  Google Scholar 

  50. J. Zhang, X. Liu, R. Blume, A.H. Zhang, R. Schlögl, D.S. Su, Science 322, 73 (2008)

    Article  Google Scholar 

  51. F. Atamny, J. Bloecker, A. Duebotzky, H. Kurt, O. Timpe, O.G. Loose, W. Mahdi, R. Schlögl, Mol. Phys. 76, 851 (1992)

    Article  Google Scholar 

  52. D. Fu, H. Lim, Y. Shi, X. Dong, J. Phys. Chem. C 112, 650 (2008)

    Article  Google Scholar 

  53. P.J. Hart, F.J. Vastola, P.L. Walker Jr., Carbon 5, 363 (1967)

    Article  Google Scholar 

  54. K. Isokoski, C.A. Poteet, H. Linnartz, Astron. Astrophys. 555, 1 (2013)

    Article  Google Scholar 

  55. T. Schädle, B. Pejcic, B. Mizaikoff, Methods 8, 756 (2016)

    Google Scholar 

  56. P.J. Innocenzi, Solids 316, 309 (2003)

    Google Scholar 

  57. B.M. Matin, Y. Mortazavi, A.A. Khodadadi, A. Abbasi, A.A. Firooz, Sens. Actuators B 151, 140 (2010)

    Article  Google Scholar 

  58. P.G. Collins, Oxford Handbook of Nanoscience and Technology vol. 2 (Oxford University Press, Oxford, 2009), pp. 156

  59. H.L. Chiang, P.C. Chiang, C. Chiang, E.E. Chang, Chemosphere 38, 2733 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DST-CSIR South Africa for the financial support. DST-NRF Centre of Excellence in Strong Materials (CoE-SM) and Centre for Nanomaterials Science Research and University of Johannesburg. IAH thanks CNPq for research grant and finally, we have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. All authors contributed equally.

Corresponding author

Correspondence to Messai A. Mamo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7397 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olifant, G.E., Mavumengwana, V., Hümmelgen, I.A. et al. Understanding the sensing mechanism of carbon nanoparticles: MnO2–PVP composites sensors using in situ FTIR—online LCR meter in the detection of ethanol and methanol vapor. J Mater Sci: Mater Electron 30, 3552–3562 (2019). https://doi.org/10.1007/s10854-018-00633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00633-x

Navigation