Skip to main content
Log in

Design and fabrication of double AlGaN/GaN distributed Bragg reflector stack mirror for the application of GaN-based optoelectronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a near-ultraviolet (380 nm) double Al0.2Ga0.8N/GaN distributed Bragg reflectors (DBRs) stack mirror was designed and fabricated. The double DBRs stack mirror consists of a 30-pair Al0.2Ga0.8N/GaN DBRs centered at 375 nm and a 20-pair Al0.2Ga0.8N/GaN DBRs centered at 385 nm. Our simulation results show that the method of double DBRs stack mirror design can broaden the stopband width greatly and increase the reflected angle efficiently, compared with the single Al0.2Ga0.8N/GaN DBRs mirror. In experiment, the double Al0.2Ga0.8N/GaN DBRs stack mirror and the reference Al0.2Ga0.8N/GaN DBRs mirror were grown on sapphire substrate by metalorganic chemical vapor deposition. The measured stopband width of the double DBRs stack mirror (~ 25 nm) is more than two times that of the reference DBRs mirror (~ 11 nm), which consists well with our simulation results. It is reasonable to believe that this work could provide a valuable information to obtain AlGaN/GaN DBRs with wide stopband width that can be used in the fabrication of GaN-based resonant cavity light-emitting diodes and vertical cavity surface emitting lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku, Appl. Phys. Lett. 69, 4056 (1996). https://doi.org/10.1063/1.117816

    Article  Google Scholar 

  2. D.B. Li, M. Senoh, K. Jiang, X.J. Sun, C.L. Guo, Adv. Opt. Photon. 10, 43 (2018). https://doi.org/10.1364/AOP.10.000043

    Article  Google Scholar 

  3. H.P. Liu, X.Q. Wang, Z.Y. Chen, X.T. Zheng, P. Wang, B.W. Shen, T. Wang, X. Rong, J. Zhang, X.L. Yang, F.J. Xu, W.K. Ge, B. Shen, Appl. Phys. Lett. 112, 162102 (2018). https://doi.org/10.1063/1.5017153

    Article  Google Scholar 

  4. J.Y. Zheng, L. Wang, X.Z. Wu, Z.B. Hao, C.Z. Sun, B. Xiong, Y. Luo, Y.J. Han, J. Wang, H.T. Li, M. Li, J.B. Kang, Q. Li, IEEE Photon. Technol. Lett. 29, 2187 (2017). https://doi.org/10.1109/LPT.2017.2766454

    Article  Google Scholar 

  5. P. Ruterana, M. Albrecht, J. Neugebauer, Nitride Semiconductors, 1st edn. (Wiley, Weinheim, 2003), p. 4

    Book  Google Scholar 

  6. F. Natali, D. Byrne, A. Dussaigne, N. Grandjean, J. Massies, B. Damilano, Appl. Phys. Lett. 82, 499 (2003). https://doi.org/10.1063/1.1539297

    Article  Google Scholar 

  7. M. Yonemaru, A. Kikuchi, K. Kishino, Phys. Status Solidi A 192, 292 (2002). https://doi.org/10.1002/1521-396X(200208)192:2%3C292::AID-PSSA292%3E3.0.CO;2-E

    Article  Google Scholar 

  8. T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, Y. Arakawa, Science 285, 1905 (1999). https://doi.org/10.1126/science.285.5435.1905

    Article  Google Scholar 

  9. Y.S. Zhao, D.L. Hibbard, H.P. Lee, K. Ma, W. So, H. Liu, J. Electron. Mater. 32, 1523 (2003). https://doi.org/10.1007/s11664-003-0124-0

    Article  Google Scholar 

  10. H.H. Yao, C.F. Lin, H.C. Kuo, S.C. Wang, J. Cryst. Growth 262, 151 (2004). https://doi.org/10.1016/j.jcrysgro.2003.10.062

    Article  Google Scholar 

  11. N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, T. Jimbo, Appl. Phys. Lett. 76, 1804 (2000). https://doi.org/10.1063/1.126171

    Article  Google Scholar 

  12. H.M. Ng, T.D. Moustakas, S.N.G. Chu, Appl. Phys. Lett. 76, 2818 (2000). https://doi.org/10.1063/1.126483

    Article  Google Scholar 

  13. T. Ive, O. Brandt, K.H. Ploog, J. Cryst. Growth 278, 355 (2005). https://doi.org/10.1016/j.jcrysgro.2004.12.048

    Article  Google Scholar 

  14. J.F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butté, N. Grandjean, Phys. Status Solidi B 242, 2326 (2005). https://doi.org/10.1002/pssb.200560968

    Article  Google Scholar 

  15. P.C. Li, X. Han, L. Yan, G.Q. Deng, M.Z. Liu, Y.T. Zhang, B.L. Zhang, Mater. Sci. Semcon. Proc. 80, 162 (2018). https://doi.org/10.1016/j.mssp.2018.02.010

    Article  Google Scholar 

  16. H.A. Macleod, Thin Film Optical Filters, 4th edn. (McGraw-Hill, Arizona, 2010), p. 222

    Book  Google Scholar 

  17. H.A. Macleod, Thin Film Optical Filters, 4th edn. (McGraw-Hill, Arizona, 2010), p. 44

    Book  Google Scholar 

  18. T. Detchprohm, Y.S. Liu, K. Mehta, S. Wang, H.G. Xie, T.T. Kao, S.C. Shen, P.D. Yoder, F.A. Ponce, R.D. Dupuis, Appl. Phys. Lett. 110, 011105 (2017). https://doi.org/10.1063/1.4973581

    Article  Google Scholar 

  19. Z. Huang, Y.T. Zhang, B.J. Zhao, F. Yang, J.Y. Jiang, G.Q. Deng, B.Z. Li, H.W. Liang, Y.C. Chang, J.F. Song, J. Mater. Sci.: Mater. Electron. 27, 1738 (2016). https://doi.org/10.1007/s10854-015-3948-5

    Google Scholar 

  20. K.E. Waldrip, J. Han, J.J. Figiel, H. Zhou, E. Makarona, A.V. Nurmikko, Appl. Phys. Lett. 78, 3205 (2001). https://doi.org/10.1063/1.1371240

    Article  Google Scholar 

  21. S. Fernández, F.B. Naranjo, F. Calle, M.A. Sánchez-García, E. Calleja, P. Vennegues, A. Trampert, K.H. Ploog, Appl. Phys. Lett. 79, 2136 (2001). https://doi.org/10.1063/1.1401090

    Article  Google Scholar 

  22. S. Fernández, F.B. Naranjo, F. Calle, M.A. Sánchez-García, E. Calleja, P. Vennegues, A. Trampert, K.H. Ploog, Semicond. Sci. Technol. 16, 913 (2001)

    Article  Google Scholar 

  23. M.A. Moram, M.E. Vickers, Rep. Prog. Phys. 72, 036502 (2009)

    Article  Google Scholar 

  24. G.S. Huang, T.C. Lu, H.H. Yao, H.C. Kuo, S.C. Wang, C.W. Lin, L. Chang, Appl. Phys. Lett. 88, 061904 (2006). https://doi.org/10.1063/1.2172007

    Article  Google Scholar 

  25. P.C. Tao, H.W. Liang, D.S. Wang, X.C. Xia, Q.J. Feng, Y. Liu, R.S. Shen, K.X. Zhang, Y.M. Luo, W.P. Guo, Q.X. Deng, G.T. Du, Mater. Sci. Semcon. Proc. 27, 841 (2014). https://doi.org/10.1016/j.mssp.2014.08.003

    Article  Google Scholar 

  26. D.S. Wang, H.W. Liang, P.C. Tao, K.X. Zhang, S.W. Song, Y. Liu, X.C. Xia, R.S. Shen, G.T. Du, Superlattices Microstruct. 70, 54 (2014). https://doi.org/10.1016/j.spmi.2014.03.005

    Article  Google Scholar 

  27. P.C. Tao, H.W. Liang, X.C. Xia, Y. Liu, J.H. Jiang, H.S. Huang, Q.J. Feng, R.S. Shen, Y.M. Luo, G.T. Du, Superlattices Microstruct. 85, 482 (2015). https://doi.org/10.1016/j.spmi.2015.05.035

    Article  Google Scholar 

  28. Y.S. Liu, S. Wang, H. Xie, T.T. Kao, K. Mehta, X.J. Jia, S.C. Shen, P.D. Yoder, F.A. Ponce, T. Detchprohm, R.D. Dupuis, Appl. Phys. Lett. 108, 081103 (2016). https://doi.org/10.1063/1.4961634

    Article  Google Scholar 

  29. T. Moudakir, S. Gautier, S. Suresh, M. Abid, Y.E. Gmili, G. Patriarche, K. Pantzas, D. Troadec, J. Jacquet, F. Genty, P. Voss, A. Ougazzaden, J. Cryst. Growth 370, 12 (2013). https://doi.org/10.1016/j.jcrysgro.2012.09.061

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (Grant No. 2016YFB0401801), the National Natural Science Foundation of China (Grant Nos. 61674068 and 61734001), the Science and Technology Developing Project of Jilin Province (Grant Nos. 20150519004JH, 20160101309JC, and 20170204045GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuantao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, G., Zhang, Y., Li, P. et al. Design and fabrication of double AlGaN/GaN distributed Bragg reflector stack mirror for the application of GaN-based optoelectronic devices. J Mater Sci: Mater Electron 30, 3277–3282 (2019). https://doi.org/10.1007/s10854-018-00600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00600-6

Navigation