Skip to main content
Log in

The rambutan-like C@NiCo2O4 composites for enhanced microwave absorption performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To obtain outstanding electromagnetic microwave absorption (EMWA) properties, the rambutan-like dielectric–magnetic C@NiCo2O4 material was successfully prepared by a simple hydrothermal method, followed by a carbonization process. Benefiting from the unique rambutan-like structure, the dielectric–magnetic C@NiCo2O4 composites showed excellent microwave attenuation ability: minimum reflection loss (RLmin) value of − 39.0 dB at 17.4 GHz and wide effective absorption bandwidth (EAB, reflection loss exceeding − 10 dB) of 4.16 GHz (> 13.84 GHz) with a matching thickness of only 1.5 mm, which were much better than those of pure C and NiCo2O4. The superior properties might be due to multiple synergistic effects: magnetic loss (NiCo2O4), dielectric loss (C, NiCo2O4), the multi-reflections, scattering and interface relaxation resulting from mesoporous rambutan-like structures, and the dipole polarization to get good electromagnetic matching and high attenuation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 2

Similar content being viewed by others

References

  1. Y. Ding, L. Zhang, Q.L. Liao, Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings. Nano Res. 9(7), 2018–2025 (2016)

    Article  Google Scholar 

  2. Y.F. Wang, D.L. Chen, X. Yin, P. Xu, F. Wu, M. He, Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 7(47), 26226–26234 (2015)

    Article  Google Scholar 

  3. X.F. Liu, Y.X. Chen, X.R. Cui, M. Zeng, R.H. Yu, G.S. Wang, Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride. J. Mater. Chem. A 3(23), 12197–12204 (2015)

    Article  Google Scholar 

  4. C.P. Li, Y.Q. Ge, X.H. Jiang, Porous Fe3O4/C microspheres for efficient broadband electromagnetic wave absorption. Ceram. Int. 44(16), 19171–19183 (2018)

    Article  Google Scholar 

  5. X. Wang, J.C. Shu, X.M. He, M. Zhang, X.X. Wang, C. Gao, J. Yuan, M.S. Cao, Green approach to conductive PEDOT:PSS decorating magnetic graphene to recover conductivity for highly efficient absorption. ACS Sustain. Chem. Eng. 6, 14017–14025 (2018)

    Article  Google Scholar 

  6. G.J.H. Melvin, Q.Q. Ni, Y. Suzuki, Microwave absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J. Mater. Sci. 49(14), 5199–5207 (2014)

    Article  Google Scholar 

  7. P.B. Liu, Y. Huang, L. Wang, Synthesis and excellent electromagnetic absorption properties of polypyrrole-reduced graphene oxide-Co3O4 nanocomposites. J. Alloys Compd. 573(19), 151–156 (2013)

    Article  Google Scholar 

  8. J. Zheng, Z.Q. Liu, X.S. Zhao, One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnology 23(16), 165601–165610 (2012)

    Article  Google Scholar 

  9. J.T. Feng, Y.C. Wang, Y.H. Hou, L.C. Li, Tunable design of yolk–shell ZnFe2O4@RGO@TiO2 microspheres for enhanced high-frequency microwave absorption. Inorg Chem Front 4, 935–945 (2017)

    Article  Google Scholar 

  10. Y. Wang, Y. Fu, X. Wu, Synthesis of hierarchical coreshell NiFe2O4@MnO2 composite microspheres decorated graphene nanosheet for enhanced microwave absorption performance. Ceram. Int. 43(14), 11367–11375 (2017)

    Article  Google Scholar 

  11. J.R. Ma, X.X. Wang, W.Q. Cao, C. Han, H.J. Yang, J. Yuan, M.S. Cao, A facile fabrication and highly tunable microwave absorption of 3D flowerlike Co3O4-rGO hybrid-architectures. Chem. Eng. J. 339, 487–498 (2018)

    Article  Google Scholar 

  12. J.Q. Zhu, X.J. Zhang, S.W. Wang, G.S. Wang, P.G. Yin, Enhanced microwave absorption material of ternary nanocomposites based on MnFe2O4@SiO2, polyaniline and polyvinylidene fluoride. Rsc Advances 6, 88104–88109 (2016)

    Article  Google Scholar 

  13. Z.W. Shi, H. Lu, Q. Liu, K.M. Deng, L.Y. Xu, R.J. Zou, J.Q. Hu, Y. Bando, D. Golberg, L. Li, NiCoO nanostructures as a promising alternative for NiO photocathodes in p-type dye-sensitized solar cells with high efficiency. Energy Technol. 2(6), 517–521 (2014)

    Article  Google Scholar 

  14. J. Zhang, F. Liu, J.P. Cheng, X.B. Zhang, Binary nickel-cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature. ACS Appl. Mater. Interfaces 7(32), 17630–17640 (2015)

    Article  Google Scholar 

  15. S. Khalid, C. Cao, L. Wang, Y. Zhu, Microwave Assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 6, 22699–22712 (2016)

    Article  Google Scholar 

  16. P. Silwal, L. Miao, I. Stern, X.L. Zhou, J. Hu, D.H. Kim, Metal insulator transition with ferrimagnetic order in epitaxial thin films of spinel NiCo2O4. Appl. Phys. Lett. 100(3), 118 (2016)

    Google Scholar 

  17. R.R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.H. Han, H. Ahn, Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J. Alloys Compd. 509(23), 6677–6682 (2011)

    Article  Google Scholar 

  18. X.F. Liu, C.C. Hao, H. Jiang, Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J Mater Chem C 5(15), 3770–3778 (2017)

    Article  Google Scholar 

  19. J. Zhan, Y.L. Yao, C.F. Zhang, C.J. Li, Synthesis and microwave absorbing properties of quasione-dimensional mesoporous NiCo2O4 nanostructure. J. Alloys Compd. 585(6), 240–244 (2014)

    Article  Google Scholar 

  20. M. Zhou, F. Lu, B. Chen, X. Zhu, X. Shen, W. Xia, H. He, X. Zeng, Thickness dependent complex permittivity and microwave absorption of NiCo2O4 nanoflakes. Mater. Lett. 159, 498–501 (2015)

    Article  Google Scholar 

  21. F.L. Wang, J.R. Liu, J. Kong, Z.J. Zhang, X.Z. Wang, M. Itoh, K.I. Machida, Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J. Mater. Chem. 21(12), 4314–4320 (2011)

    Article  Google Scholar 

  22. H.J. Wu, G.L. Wu, Y.Y. Ren, L. Yang, L.D. Wang, X.H. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)

    Article  Google Scholar 

  23. Y. Xia, Y. Xiong, B. Li, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew. Chem. Int. Ed. 38(4), 335–344 (2009)

    Google Scholar 

  24. B. Zhao, G. Shao, B. Fan, Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A. 3, 10345–10352 (2015)

    Article  Google Scholar 

  25. L. Shen, C. Qian, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24(18), 2630–2637 (2014)

    Article  Google Scholar 

  26. G.L. Wu, Y.H. Cheng, Y.Y. Ren, Y.Q. Wang, Z.D. Wang, H.J. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)

    Article  Google Scholar 

  27. N.D. Wu, X.G. Liu, C.Y. Zhao, Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. J. Alloys Compd. 656, 628–634 (2016)

    Article  Google Scholar 

  28. Y.Y. Lü, Y.T. Wang, H.L. Li, MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7(24), 13604–13611 (2015)

    Article  Google Scholar 

  29. R. Qiang, Y.C. Du, Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). J. Alloys Compd. 681, 384–393 (2016)

    Article  Google Scholar 

  30. Q.L. Liu, D. Zhang, T.X. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93(1), 401 (2008)

    Google Scholar 

  31. N.N. Wu, H.L. Lv, J.R. Liu, Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys. Chem. Chem. Phys. 18(46), 31542–31550 (2016)

    Article  Google Scholar 

  32. H. Lv, G.B. Ji, H.Q. Zhang, M. Li, Z.Z. Zuo, Y. Zhao, B.S. Zhang, D.M. Tang, Y.W. Du, CoxFey@C composites with tunable atomic ratios for excellent electromagnetic absorption properties. Sci. Rep. 5, 18249–18259 (2015)

    Article  Google Scholar 

  33. M.H. Xu, W. Zhong, Z.H. Wang, Highly stable FeCo/carbon composites: magnetic properties and microwave response. Phys. E. 52(3), 14–20 (2013)

    Article  Google Scholar 

  34. G.M. Li, L.C. Wang, W. Li, CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent. Phys. Chem. Chem. Phys. 16(24), 12385–12392 (2014)

    Article  Google Scholar 

  35. H.Y. Lin, H. Zhu, H.F. Guo, Microwave-absorbing properties of Co-filled carbon nanotubes. Mater. Res. Bull. 43(10), 2697–2702 (2008)

    Article  Google Scholar 

  36. M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater. Interfaces 4(12), 6949–6956 (2012)

    Article  Google Scholar 

  37. Z.R. Jia, D. Lan, K.J. Lin, M. Qin, K.C. Kou, G.L. Wu, H.J. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. 29, 17122–17136 (2018)

    Google Scholar 

  38. Y.C. Yin, X.F. Liu, X.J. Wei, Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 8(50), 34686–34698 (2016)

    Article  Google Scholar 

  39. Q. He, T. Yuan, X. Zhang, Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes. J. Phys. Chem. C 118(42), 24784–24796 (2014)

    Article  Google Scholar 

  40. H.J. Wu, G.L. Wu, L.D. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)

    Article  Google Scholar 

  41. D. Lan, M. Qin, R.S. Yang, S. Chen, H.J. Wu, Y.C. Fan, Q.H. Fu, F.L. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 533, 481–491 (2019)

    Article  Google Scholar 

  42. C.Y. Liang, Y.J. Gou, L.N. Wu, Nature of electromagnetic-transparent SiO2 shell in hybrid nanostructure enhancing electromagnetic attenuation. J. Phys. Chem. C 120(24), 12967–12973 (2016)

    Article  Google Scholar 

  43. F. Nanni, P. Travaglia, M. Valentini, Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos. Sci. Technol. 69(3), 485–490 (2009)

    Article  Google Scholar 

  44. F. Wu, A. Xie, M. Sun, Y. Wang, M. Wang, Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 3(27), 14358–14369 (2015)

    Article  Google Scholar 

  45. H.J. Wu, S.H. Qu, K.J. Lin, Y.C. Qing, L.D. Wang, Y.C. Fan, Q.H. Fu, F.L. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)

    Article  Google Scholar 

  46. Y.N. Li, Y. Zhao, X.Y. Lu, Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4 @polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Research 9(7), 2034–2045 (2016)

    Article  Google Scholar 

  47. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, Laminated magnetic graphene with enhanced electro-magnetic wave absorption properties. J Mater Chem C 1(4), 765–777 (2012)

    Article  Google Scholar 

  48. M. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge, W. Hines, Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80(23), 4404–4410 (2002)

    Article  Google Scholar 

  49. W.Z. Li, T. Qiu, L.L. Wang, S.S. Ren, J.R. Zhang, L.F. He, X.Y. Li, Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres. ACS Appl. Mater. Interfaces 5(3), 883–891 (2013)

    Article  Google Scholar 

  50. G.Z. Wang, Z. Gao, S.W. Tang, C.Q. Chen, F.F. Duan, S.C. Zhao, S.W. Lin, Y.H. Feng, L. Zhou, Y. Qin, Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012)

    Article  Google Scholar 

  51. M.S. Cao, X.L. Shi, X.Y. Fang, H.B. Jin, Z.L. Hou, W. Zhou, Y. Chen, Microwave absorption properties and mechanism of cagelike ZnO/SiO2 nanocomposites. Appl. Phys. Lett. 91(20), 203110–203113 (2007)

    Article  Google Scholar 

  52. R.F. Zhuo, Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs. J. Phys. D 41(18), 185405–185413 (2008)

    Article  Google Scholar 

  53. B. Wen, M.S. Cao, Z.L. Hou, W.L. Song, L. Zhang, M.M. Lu, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65, 124–139 (2013)

    Article  Google Scholar 

  54. M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, D.Q. Zhang, W.Z. Wang, J. Yuan, Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 7(34), 19408–19415 (2015)

    Article  Google Scholar 

  55. M.S. Cao, X.X. Wang, W.Q. Cao, X.Y. Fang, B. Wen, J. Yuan, Thermally Driven Transport and Relaxation Switching Self-Powered Electromagnetic Energy Conversion. Small 14, 1800987–1800994 (2018)

    Article  Google Scholar 

  56. B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)

    Article  Google Scholar 

  57. X.Y. Fang, M.S. Cao, X.L. Shi, Z.L. Hou, W.L. Song, J. Yuan, Microwave responses and general model of nanotetraneedle ZnO: integration of interface scattering, microcurrent, dielectric relaxation, and microantenna. J. Appl. Phys. 107, 054304 (2010)

    Article  Google Scholar 

  58. W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.S. Cao, Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 41476059) and China Postdoctoral Science Foundation (No. 2016M600557).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Zhang or Liangmin Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Ge, Y., Jiang, X. et al. The rambutan-like C@NiCo2O4 composites for enhanced microwave absorption performance. J Mater Sci: Mater Electron 30, 3124–3136 (2019). https://doi.org/10.1007/s10854-018-00592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00592-3

Navigation