Skip to main content
Log in

Ferroelectric and magneto-dielectric properties of yttrium doped BaTiO3–CoFe2O4 multiferroic composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic composites of ferroelectric and ferrite phases having general formula xCoY0.1Fe1.9O4—(1 − x) Ba0.95Y0.05TiO3 (where x = 0.05, 0.1 and 0.15) were prepared using the conventional solid-state reaction method. X-ray diffraction studies were done to confirm the presence of constituent phases. The microstructural analysis revealed an increase in density with the increase of ferrite content in the ferroelectric matrix. Dielectric studies of the composites, in the temperature range 100–550 K revealed two ferroelectric phase transitions. Variation of dielectric constant and dielectric loss with frequency in the range of 20–3 MHz was carried out at room temperature. The low-temperature dc conductivity behaviour follows Motts law, confirming the variable range hopping mechanism in all the composites. All the composites showed P–E and M–H hysteresis loops; which confirm the ferroelectric and ferrimagnetic nature of the composites. At temperatures below 173 K, an increase in coercivity and saturation magnetization is observed due to frozen spins. The coupling between ferroelectric and ferromagnetic ordering was confirmed by room temperature magneto-dielectric studies. The decrease in real part of dielectric constant and dielectric loss was observed with an increase in the applied magnetic field. An appreciable increase in percentage magneto-capacitance was observed at lower frequencies and with the increase of ferrite content in the composites. The magneto-electric coupling coefficient was calculated by using the expansion of the thermodynamic potential φ (for x = 0.15) and was found to be 3.397 × 10−2 (emu/g)−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. C. Schmitz-Antoniak, D. Schmitz, P. Borisov, F.M. De Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, W. Kleemann, H. Wende, Nat. Commun. 4, 2051 (2013)

    Article  Google Scholar 

  2. B. Li, C. Wang, G. Dou, Cryst. Eng. Comm. 15(11), 2147–2156 (2013)

    Article  CAS  Google Scholar 

  3. K.C. Verma, R.K. Kotnala, N.S. Negi, Appl. Phys. Lett. 92(15), 152902 (2008)

    Article  Google Scholar 

  4. D. Khomskii, Physics 2, 20 (2009)

    Article  Google Scholar 

  5. G. Catalan, J.F. Scott, Adv. Mater. 21(24), 2463–2485 (2009)

    Article  CAS  Google Scholar 

  6. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103(1), 031101 (2008)

    Article  Google Scholar 

  7. M.U.D. Rather, R. Samad, B. Want, J. Electron. Mater. 47(3), 2143–2154 (2018)

    Article  CAS  Google Scholar 

  8. K. Kageyama, J. Takahashi, J. Am. Ceram. Soc. 87(8), 1602–1605 (2004)

    Article  CAS  Google Scholar 

  9. K.D. Schomann, Appl. Phys. 6(1), 89–92 (1975)

    Article  CAS  Google Scholar 

  10. Y.H. Tang, X.M. Chen, Y.J. Li, X.H. Zheng, Mater. Sci. Eng. B 116(2)), 150–155 (2005)

    Article  Google Scholar 

  11. Y. Shen, J. Sun, L. Li, Y. Yao, C. Zhou, R. Sua, Y. Yang, J. Mater. Chem. C 2(14), 2545–2551 (2014)

    Article  CAS  Google Scholar 

  12. R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40(7), 9027–9036 (2014)

    Article  CAS  Google Scholar 

  13. M. Etier, V.V. Shvartsman, Y. Gao, J. Landers, H. Wende, D.C. Lupascu, Ferroelectrics 448(1), 77–85 (2013)

    Article  CAS  Google Scholar 

  14. M.T. Buscaglia, M. Viviani, V. Buscaglia, C. Bottino, P. Nanni, J. Am. Ceram. Soc. 85(8), 1569–1575 (2002)

    Article  CAS  Google Scholar 

  15. P. Yongping, Y. Wenhu, C. Shoutian, J. Rare Earths 25, 154–157 (2007)

    Article  Google Scholar 

  16. A. Franco Jr., H.V.S. Pessoni, T.E.P. Alves, Mater. Lett. 208, 115–117 (2017)

    Article  CAS  Google Scholar 

  17. B. Sarkar, B. Dalal, V. Dev Ashok, K. Chakrabarti, A. Mitra, S.K. De, J. Appl. Phys. 115(12), 123908 (2014)

    Article  Google Scholar 

  18. N. Pulphol, R. Muanghlua, S. Niemcharoen, N. Vittayakorn, W. Vittayakorn, Ferroelectrics 488(1), 170–180 (2015)

    Article  CAS  Google Scholar 

  19. K.C. Verma, S. Singh, S.K. Tripathi, R.K. Kotnala, J. Appl. Phys. 116(12), 124103 (2014)

    Article  Google Scholar 

  20. R. Samad, M.U.D. Rather, B. Want, J. Alloys Compd. 715, 43–52 (2017)

    Article  CAS  Google Scholar 

  21. M. Fechner, S. Ostanin, I. Mertig, Phys. Rev. B 77(9), 094112 (2008)

    Article  Google Scholar 

  22. P. Ren, Q. Wang, X. Wang, L. Wang, J. Wang, H. Fan, G. Zhao, Mater. Lett. 174, 197–200 (2016)

    Article  CAS  Google Scholar 

  23. A. Chena, Z. Yu, V.M. Ferreira, P.M. Vilarinho, J.L. Baptista, J. Eur. Ceram. Soc. 16(10)), 1051–1056 (1996)

    Article  Google Scholar 

  24. B. Want, M.U.D. Rather, R.Samad, J. Mater. Sci. 27(6), 5860–5866 (2016)

    CAS  Google Scholar 

  25. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, S. Buddhudu, Adv. Funct. Mater. 14(9), 920–926 (2004)

    Article  CAS  Google Scholar 

  26. J.C. Maxwell, Electricity and Magnetism (Oxford University Press), Oxford, 1973)

    Google Scholar 

  27. K.W. Wagner, Ann. Phys. 40, 818 (1993)

    Google Scholar 

  28. C.G. Koops, Phys. Rev. B 83(1), 121 (1951)

    Article  CAS  Google Scholar 

  29. T.G. Lupeiko, I.B. Lopatina, I.V. Kozyrev, L.A. Derbaremdiker, Inorg. Mater. 28(3), 481–485 (1992)

    Google Scholar 

  30. V. Senthil, T. Badapanda, S.N. Kumar, P. Kumar, S. Panigrahi, J. Polym. Res. 19(3), 9838 (2012)

    Article  Google Scholar 

  31. D. Shana, Y.F. Qua, J.J. Song, Solid State Commun. 141(2), 65–68 (2007)

    Article  Google Scholar 

  32. K.K. Chi, Dielectric phenomena in solids: with emphasis on physical concepts of electronic processes (2004)

  33. R. Maier, J.L. Cohn, J.J. Neumeier, L.A. Bandersky, Appl. Phys. Lett. 78(17), 2536–2538 (2001)

    Article  CAS  Google Scholar 

  34. S.K. Rout, P.K. Barhai, E. Sinha, Phase Transit. 81(1), 129–137 (2008)

    Article  CAS  Google Scholar 

  35. Q. Sun, J. Hu, Q. Gu, K. Bian, J. Wang, K. Xiong, K. Zhu, Mater. Tech. 31(14), 854–859 (2016)

    Article  CAS  Google Scholar 

  36. H.R. Rukmini, R.N.P. Choudary, D.L. Prabhakara, J. Phys. Chem. Solids 61, 1735–1743 (2000)

    Article  CAS  Google Scholar 

  37. E.J. Verwey, J.H. de Boer, Rec. Trav. Chim. Pahys. Bas. 55(6), 531–540 (1936)

    Article  CAS  Google Scholar 

  38. R.S. Devan, Y.D. Kolekar, B.K. Chougule, J. Phys.:Condens. Matter 18, 9809–9821 (2006)

    CAS  Google Scholar 

  39. R. Grigalaitis, M.M. Vijatović Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, J. Banys, Ceram. Int. 40(40), 6165–6170 (2014)

    Article  CAS  Google Scholar 

  40. R.S. Vemuri, K. Kamala Bharathi, S.K. Gullapalli, C.V. Ramana, ACS Appl. Mater. Interfaces 2(9), 2623–2628 (2010)

    Article  CAS  Google Scholar 

  41. K. Kamala Bharathi, G. Markandeyulu, C.V. Ramana, J. Electrochem. Soc. 158(3), G71–G78 (2011)

    Article  Google Scholar 

  42. A. Azam, A. Jawad, A.S. .Ahmed, M. Chaman, A.H. Naqvi, J. Alloys. comp. 509(6), 2909–2913 (2011)

    Article  CAS  Google Scholar 

  43. I.C. Nlebedim, K.W. Dennis, R.W. McCallum, D.C. Jiles, J. Appl. Phys. 115(17), 17A519 (2014)

    Article  Google Scholar 

  44. N.F. Mott, Phil. Mag. 19(160), 835–852 (1969)

    Article  CAS  Google Scholar 

  45. N. Adhlakha, K.L. Yadav, Smart Mater. Struct. 2(11), 115021 (2012)

    Article  Google Scholar 

  46. D.K. Pradhan, R.N.P. Chowdhury, T.K. Nath, Appl. Nanosci. 2(3), 261–273 (2012)

    Article  CAS  Google Scholar 

  47. H. Yang, G. Zhang, Y. Lin, J. Alloys Compd. 644, 390–397 (2015)

    Article  CAS  Google Scholar 

  48. V.L. Mathe, A.D. Sheikh, G. Srinivasan, J. Magn. Magn.Mater. 324(5), 695–703 (2012)

    Article  CAS  Google Scholar 

  49. B. Van den, D.R. Terrell, R.A.J. Born, H.F.J. Giller, J. Mater. Sci. 9(10), 1705–1709 (1974)

    Article  Google Scholar 

  50. G. Srinivasan, E.T. Rasmussen, R. Hayes, Phys. Rev. B 67(1), 014418 (2003)

    Article  Google Scholar 

  51. R.C. Kambalea, P.A. Shaikha, C.H. Bhosalea, K.Y. Rajpurea, Y.D. Kolekarb, J. Alloys Compd. 489(1), 310–315 (2010)

    Article  Google Scholar 

  52. N. Preksha, N. Dhruv, S. Solanki, R.B. Kulkarni, Jotania, AIP Conf. Proc. 1728(1), 020074 (2016)

    Google Scholar 

  53. Y. Melikhov, J.E. Snyder, D.C. Jiles, A.P. Ring, J.A. Paulsen, C.C.H. Lo, K.W. Dennis, J. Appl. Phys. 99(8), 08R102 (2006)

    Article  Google Scholar 

  54. Y. Melikhov, J.E. Snyder, C.C. Lo, P.N. Matlage, S.H. Song, K.W. Dennis, D.C. Jiles, IEEE Trans. Magn. 42(10), 2861–2863 (2006)

    Article  CAS  Google Scholar 

  55. N. Ranvah, I.C. Nlebedim, Y. Melikhov, J.E. Snyder, P.I. Williams, A.J. Moses, D.C. Jiles, IEEE Trans. Magn. 45(10), 4261–4264 (2009)

    Article  CAS  Google Scholar 

  56. K. Maaz, M. Usman, S. Karim, A. Mumtaz, S.K. Hasanain, M.F. Bertino, J. App. Phys. 105(11), 113917 (2009)

    Article  Google Scholar 

  57. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials (Addison-Wesley, Oxford, 2009)

    Google Scholar 

  58. S.N. Babu, J.H. Hsu, Y.S. Chen, J.G. Lin, J. Appl. Phys. 109(7), 07D904 (2011)

    Article  Google Scholar 

  59. G. Catalan, Appl. Phys. Lett. 88(10), 102902–102904 (2006)

    Article  Google Scholar 

  60. A. Venimadhav, D. Chandrasekar, J.Krishna Murthy, Appl Nanosci. 3(1), 25–28 (2013)

    Article  CAS  Google Scholar 

  61. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Phys. Rev. B 67(18), 180401–180404 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Ms. Rosy Rahman, Ph.D Research Scholar, IIT Kharagpur for providing XRD and FESEM facility. The authors also thank authorities of the University of Kashmir for providing facility of the vibrating sample magnetometer facility (Micro Sense EZ9 VSM) for magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basharat Want.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rather, M.U.D., Samad, R. & Want, B. Ferroelectric and magneto-dielectric properties of yttrium doped BaTiO3–CoFe2O4 multiferroic composite. J Mater Sci: Mater Electron 29, 19164–19179 (2018). https://doi.org/10.1007/s10854-018-0043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0043-8

Navigation