Skip to main content
Log in

Enhancement of the thermoelectric performance of CuInTe2 via SnO2 in situ replacement

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In situ induced nanostructure is employed as an alternative way to enhance the thermoelectric performance of p-type CuInTe2 based thermoelectric materials in this work. Dispersive In2O3 nanoparticles are formed in the samples with SnO2 by virtue of the in situ replacement of SnO2 and CuInTe2. As a result, an obvious reduction in the thermal conductivity has been achieved due to the intensive scattering of phonon by the in situ formed In2O3 nanoparticles. In addition, the power factor of CuInTe2 is less effected by SnO2 additive. Eventually, an enhanced ZT of 1.1 at 823 K has been achieved for the CuInTe2–0.5% SnO2 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Ortega, M. Ibanez, Y. Liu et al., Bottom-up engineering of thermoelectric nanomaterials and devices from solutionprocessed nanoparticle building blocks. Chem. Soc. Rev. 46, 3510–3528 (2017)

    Article  Google Scholar 

  2. J.R. Sootsman, D.Y. Chung., M.G. Kanatzidis et al., New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 48, 8616–8639 (2009)

    Article  Google Scholar 

  3. S. Ali, Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011)

    Article  Google Scholar 

  4. J. Mao, H.S. Kim, J. Shuai et al., Thermoelectric properties of materials near the band crossing line in Mg2Sn–Mg2Ge–Mg2Si system. Acta Mater. 103, 633–642 (2016)

    Article  Google Scholar 

  5. L.-D. Zhao, C. Chang, G. Tan et al., SnSe: a remarkable new thermoelectric material. Energy Environ. Sci. 9, 3044–3060 (2016)

    Article  Google Scholar 

  6. T. Zhu, C. Fu, H. Xie et al., High efficiency half-heusler thermoelectric materials for energy harvesting. Adv. Energy Mater. 5, 1500588 (2015)

    Article  Google Scholar 

  7. Y. Luo, Y. Zheng, Z. Luo et al., n-Type SnSe2 oriented-nanoplate-based pellets for high thermoelectric performance. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201702167

  8. G. Tan, F. Shi, S. Hao et al., Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 137, 11507–11516 (2015)

    Article  Google Scholar 

  9. L.D. Zhao, J. He, D. Berardan et al., BiCuSeO oxyselenides: new promising thermoelectric materials. Energy Environ. Sci. 7, 2900–2924 (2014)

    Article  Google Scholar 

  10. R. Liu, L. Xi, H. Liu et al., Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure. Chem. Commun. 48, 3818–3820 (2012)

    Article  Google Scholar 

  11. G. Zhou, D. Wang, High thermoelectric performance from optimization of hole-doped CuInTe2. Phys. Chem. Chem. Phys. 18, 5925–5931 (2016)

    Article  Google Scholar 

  12. J. Yang, S. Chen, Z. Du et al., Lattice defects and thermoelectric properties: the case of p-type CuInTe2 chalcopyrite on introduction of zinc. Dalton Trans. 43, 15228–15236 (2014)

    Article  Google Scholar 

  13. K. Becker, S. Wagner, Temperature-dependent nuclear magnetic resonance in CuInX2 (X = S, Se, Te) chalcopyrite-structure compounds. Phys. Rev. B 27, 5240–5249 (1983)

    Article  Google Scholar 

  14. V. Kucek, C. Drasar, J. Kasparova et al., High-temperature thermoelectric properties of Hg-doped CuInTe2. J. Appl. Phys. 118, 125105 (2015)

    Article  Google Scholar 

  15. C. Hu, K. Peng, G. Wang et al., Effect of Al substitution on thermoelectric performance of CuInTe2 compounds. MRS Proc. 1735, mrsf14-1735-cc11-05 (2015)

    Article  Google Scholar 

  16. V. Kucek, C. Drasar, J. Navratil et al., Thermoelectric properties of Ni-doped CuInTe2. J. Phys. Chem. Solids 83, 18–23 (2015)

    Article  Google Scholar 

  17. W. Li, G. Yang, J. Zhang et al., Electronic structures and thermoelectric properties of CuMTe2 (M = Al, Ga, In) copper chalcopyrites: a first-principles study. Eur. Phys. J. B 88, 1–6 (2015)

    Google Scholar 

  18. Y. Li, Q. Meng, Y. Deng et al., High thermoelectric performance of solid solutions CuGa1 – xInxTe2 (x = 0–1.0). Appl. Phys. Lett. 100, 231903 (2012)

    Article  Google Scholar 

  19. W.D. Carr, D.T. Morelli, Influence of doping and solid solution formation on the thermoelectric properties of chalcopyrite semiconductors. J. Alloys Compd. 630, 277–281 (2015)

    Article  Google Scholar 

  20. V. Kucek, C. Drasar, J. Navratil, T. Plechacek et al., Thermoelectric properties of Ni-doped CuInTe2. J. Phys. Chem. Solids 83, 18–23 (2015)

    Article  Google Scholar 

  21. Z. Xia, G. Wang, X. Zhou et al., Effect of the Cu vacancy on the thermoelectric performance of p-type Cu1 – xInTe2 compounds. Ceram. Int. 43, 16276–16282 (2017)

    Article  Google Scholar 

  22. R. Liu, Y. Qin, N. Cheng et al., Thermoelectric performance of Cu1 – x – δAg x InTe2 diamond-like materials with a pseudocubic crystal structure. Inorg. Chem. Front. 3, 1167–1177 (2016)

    Article  Google Scholar 

  23. J. Wang, B.-Y. Zhang, H.-J. Kang et al., Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano Energy 35, 387–395 (2017)

    Article  Google Scholar 

  24. Y. Luo, Q. Jiang, J. Yang et al., Simultaneous regulation of electrical and thermal transport properties in CuInTe2 by directly incorporating excess ZnX (X = S, Se). Nano Energy 32, 80–87 (2017)

    Article  Google Scholar 

  25. E. Lee, J. Ko, J.-Y. Kim et al., Enhanced thermoelectric properties of Au nanodot-included Bi2Te3 nanotube composites. J. Mater. Chem. C 4, 1313–1319 (2016)

    Article  Google Scholar 

  26. L.-D. Zhao, S.-H. Lo, J. He et al., High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. J. Am. Chem. Soc. 133, 20476–20487 (2011)

    Article  Google Scholar 

  27. Y. Luo, J. Yang, Q. Jiang et al., Progressive regulation of electrical and thermal transport properties to high-performance CuInTe2 thermoelectric materials. Adv. Energy Mater. 6, 1600007 (2016)

    Article  Google Scholar 

  28. Y. Luo, J. Yang, Q. Jiang et al., Large enhancement of thermoelectric performance of CuInTe2 via a synergistic strategy of point defects and microstructure engineering. Nano Energy 18, 37–46 (2015)

    Article  Google Scholar 

  29. F. Gu, S.F. Wang, M.K. Lü et al., Photoluminescence properties of SnO2 nanoparticles synthesized by sol–gel method. J. Phys. Chem. B 108, 8119–8123 (2004)

    Article  Google Scholar 

  30. C. Fu, H. Wu, Y. Liu et al., Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering. Adv. Sci. 3, 1600035 (2016)

    Article  Google Scholar 

  31. J. Wei, H.J. Liu, L. Cheng et al., Molecular dynamics simulations of the lattice thermal conductivity of thermoelectric material CuInTe2. Phys. Lett. A 381, 1611–1614 (2017)

    Article  Google Scholar 

  32. G. Wang, D. Yu, L. Guo, et al., Rapid fabrication of CuInSbxTe2–x (0 ≤ x ≤ 0.10) compounds and their thermoelectric performance. Sci. Adv. Mater. 7, 2672–2678 (2015)

    Article  Google Scholar 

  33. H. Ehrenreich, F. Spaepen, Solid State Physics. (Academic Press, San Diego, 2001)

    Google Scholar 

  34. M. Hong, Z. Chen, L. Yang et al., Enhancing the thermoelectric performance of SnSe1 – xTex nanoplates through band engineering. J. Mater. Chem. A 5, 10713–10721 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China Postdoctoral Science Foundation (2016M602376, 2015M572210), National Natural Science Foundation of China (61604110), Natural Science Foundation of Hubei Provincial China (2016CFB297, 2017CFB291), Department of Education Science Research Program of Hubei Province (Q20161110) and the State Key Laboratory of Refractories and Metallurgy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yubo Luo or Lei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Luo, Y., Zheng, Y. et al. Enhancement of the thermoelectric performance of CuInTe2 via SnO2 in situ replacement. J Mater Sci: Mater Electron 29, 4732–4737 (2018). https://doi.org/10.1007/s10854-017-8427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8427-8

Navigation