Skip to main content

Advertisement

Log in

Structural and optical characterization of stacked MoS2 nanosheets by hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2), as a layered transition metal dichalcogenides (TMDCs) has profound applications in electronic devices, sensors, Li-ion batteries, solar cells, water purification, photo catalysis etc. Layered TMDCs are obtained through exfoliation of bulk material. There are various methods for synthesizing layered TMDCs from their respective bulk form. In this paper, we report hydrothermal method as the easiest and environmentally friendly way of preparing stacked MoS2 nanosheets from its bulk form. Here we confirm the structural and morphological properties of these stacked nanosheets by X-ray diffraction and electron microscopy. Energy dispersive X-ray analyzer confirms the elemental composition of the prepared MoS2 nanolayer. Optical properties of the stacked MoS2 were characterized by UV–Vis spectroscopy and photoluminescence spectroscopy (PL). The CIE chromaticity diagram identifies the color of the emission using PL data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Lanzara, Graphene gets a good gap. Physics 91, 8–10 (2015)

    Google Scholar 

  2. N.V. Podberezskaya, S.A. Magarill, Crystal chemistry of dichalcogenides Mx2. J. Struct. Chem. 42, 654–681 (2001)

    Article  Google Scholar 

  3. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 2–5 (2010)

    Article  Google Scholar 

  4. P. Parilla et al., Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization. J. Phys. Chem. B 108, 6197–6207 (2004)

    Article  Google Scholar 

  5. W.J. Li et al., Hydrothermal synthesis of MoS2 nanowires. J. Cryst. Growth 250, 418–422 (2003)

    Article  Google Scholar 

  6. G. Feng, A. Wei, Y. Zhao, J. Liu, Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method. J. Mater. Sci. Mater. Electron. 26, 8160–8166 (2015)

    Article  Google Scholar 

  7. S. Cao, T. Liu, S. Hussain, W. Zeng, X. Peng, Hydrothermal synthesis of variety low dimensional WS2 nanostructures. Mater. Lett. 129, 205–208 (2014)

    Article  Google Scholar 

  8. S. Bastide, D. Duphil, J.P. Borra, C. Lévy-Clément, WS2 closed nanoboxes synthesized by spray pyrolysis. Adv. Mater. 18, 106–109 (2006)

    Article  Google Scholar 

  9. M. Amani et al., High luminescence efficiency in MoS2 grown by chemical vapor deposition. ACS Nano 10, 6535–6541 (2016)

    Article  Google Scholar 

  10. I. Wiesel et al., Synthesis of WS2 and MoS2 fullerene-like nanoparticles from solid precursors. Nano Res. 2, 416–424 (2009)

    Article  Google Scholar 

  11. P.X. Zhao et al., One-dimensional MoS2-decorated TiO2 nanotube gas sensors for efficient alcohol sensing. J. Alloy. Compd. 674, 252–258 (2016)

    Article  Google Scholar 

  12. M. Donarelli et al., Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuators B 207, 602–613 (2015)

    Article  Google Scholar 

  13. K. Kalantar-zadeh, J.Z. Ou, Biosensors based on two-dimensional MoS2. ACS Sens. 1, 5–16 (2016)

    Article  Google Scholar 

  14. B. Cho et al., Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 7, 16775–16780 (2015)

    Article  Google Scholar 

  15. D. Voiry et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013)

    Article  Google Scholar 

  16. D. James, T. Zubkov, Photocatalytic properties of free and oxide-supported MoS2 and WS2 nanoparticles synthesized without surfactants. J. Photochem. Photobiol. A 262, 45–51 (2013)

    Article  Google Scholar 

  17. B. Han, Y.H. Hu, MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci. Eng. 4, 285–304 (2016)

    Article  Google Scholar 

  18. Z. Hu et al., MoS2 with intercalation reaction as long-life anode material for lithium ion batteries. Inorg. Chem. Front. 3, 532–535 (2016)

    Article  Google Scholar 

  19. L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8, 1759–1770 (2014)

    Article  Google Scholar 

  20. J. Kong, C. Zhao, Y. Wei, X. Lu, MoS2 nanosheets hosted in polydopamine-derived mesoporous carbon nanofibers as lithium-ion battery anodes: enhanced MoS2 capacity utilization and underlying mechanism. ACS Appl. Mater. Interfaces 7, 24279–24287 (2015)

    Article  Google Scholar 

  21. L. Hao et al., Electrical and photovoltaic characteristics of MoS2/Si p-n junctions. J. Appl. Phys. 117 (2015)

  22. M.-L. Tsai et al., Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 8317–8322 (2014)

    Article  Google Scholar 

  23. S.A. Patil et al., Highly efficient and stable DSSCs of wet-chemically synthesized MoS2 counter electrode. Dalton Trans. 43, 5256–5259 (2014)

    Article  Google Scholar 

  24. M. Yang, J. Jeong, Y. Suk, B. Gill, High-performance super capacitor based on three-dimensional MoS2/graphene aerogel composites. Compos. Sci. Technol. 121, 123–128 (2015)

    Article  Google Scholar 

  25. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102–1120 (2014)

    Article  Google Scholar 

  26. J. Ye, X. Li, J. Zhao, X. Mei, Q. Li, A facile way to fabricate high-performance solution-processed n-MoS2/p-MoS2 bilayer photodetectors. Nanoscale Res. Lett. 10, 454 (2015)

    Article  Google Scholar 

  27. S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012)

    Article  Google Scholar 

  28. A. Shankara, P.L. Menezes, K.R.Y. Simha, S.V. Kailas, Study of solid lubrication with MoS2 coating in the presence of additives using reciprocating ball-on-flat scratch tester. Sadhana - Acad. Proc. Eng. Sci. 33, 207–220 (2008)

    Google Scholar 

  29. H. Xie, B. Jiang, J. He, X. Xia, F. Pan, Tribology international lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 93, 63–70 (2016)

    Article  Google Scholar 

  30. H. Liu et al., Self-stacked, small-sized MoS2 nanosheets for high-performance lithium-ion batteries. Energy Technol. 5, 2039–2045 (2017)

    Article  Google Scholar 

  31. K. Zhou, Y. Zhu, X. Yang, J. Zhou, C. Li, Demonstration of photoluminescence and metal-enhanced fluorescence of exfoliated MoS2. ChemPhysChem 13, 699–702 (2012)

    Article  Google Scholar 

  32. C. Kittel, Introduction to Solid State Physics, Ch. 2, 8th edn. (Wiley, New York, 1968), pp. 25–27

    Google Scholar 

  33. Y. Zhang et al., Synthesis of hierarchical MoS2 microspheres composed of nanosheets assembled via facile hydrothermal method as anode material for lithium-ion batteries. J. Nanopart. Res. 18, 1–9 (2016)

    Article  Google Scholar 

  34. H. Sarma, K.C. Sarma, X-ray peak broadening analysis of ZnO nanoparticles derived by precipitation method. Int. J. Sci. Res. Publ. 4, 1–7 (2014)

    Google Scholar 

  35. D.L. Schodek, P. Ferreira, M.F. Ashby, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects (Butterworth-Heinemann, Amsterdam, 2009)

    Google Scholar 

  36. D. Rangappa, J. Jang, I. Honma, Supercritical fluid processing of graphene and graphene oxide. Graphene - Synth. Charact. Prop. Appl. 45–58 (2011)

  37. P.P. Wang, H. Sun, Y. Ji, W. Li, X. Wang, Three-dimensional assembly of single-layered MoS2. Adv. Mater. 26, 964–969 (2014)

    Article  Google Scholar 

  38. J. Wang et al., Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition. RSC Adv. 5, 4364–4367 (2015)

    Article  Google Scholar 

  39. H. Li et al., From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)

    Article  Google Scholar 

  40. B. Visic et al., Optical properties of exfoliated MoS2 coaxial nanotubes - analogues of graphene. Nanoscale Res. Lett. 6, 593 (2011)

    Article  Google Scholar 

  41. L. Muscuso, S. Cravanzola, F. Cesano, D. Scarano, A. Zecchina, Optical, vibrational, and structural properties of MoS2 nanoparticles obtained by exfoliation and fragmentation via ultrasound cavitation in isopropyl alcohol. J. Phys. Chem. C 119, 3791–3801 (2015)

    Article  Google Scholar 

  42. W. Qiao et al., Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation. Appl. Surf. Sci. 359, 130–136 (2015)

    Article  Google Scholar 

  43. D. Dumcenco et al., Large-area epitaxial monolayer MoS2. ACS Nano 9, 4611–4620 (2015)

    Article  Google Scholar 

  44. A.-S. Gadallah, M.M. El-Nahass, Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating. Adv. Condens. Matter Phys. 1–11 (2013)

  45. B. Bijoy, Synthesis and characterization of nanocrystalline ZnS thin films and quantum dots by chemical process, PhD thesis Guwahati University, pp. 210–215 (2015)

  46. S. Ahmad, S. Mukherjee, A comparative study of electronic properties of bulk MoS2 and its monolayer using DFT technique: application of mechanical strain on MoS2 monolayer. 52–59 (2014)

  47. A. Splendiani et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)

    Article  Google Scholar 

  48. W. Zhao et al., Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 13, 5627–5634 (2013)

    Article  Google Scholar 

  49. A. Castellanos-Gomez, H.S.J. van der Zant, G.A. Steele, Folded MoS2 layers with reduced interlayer coupling. Nano Res. 7, 1–7 (2014)

    Article  Google Scholar 

  50. B. Li et al., Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. Sci. Rep. 7, 11182 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge ‘Sophisticated Test and Instrumentation Centre (STIC)’ and ‘Sophisticated Analytical Instrumentation Facility (SAIF), Cochin’, for providing analytical facilities and for valuable discussions. We are grateful to Dr. E.I. Anila, UC College, Aluva for providing PL facility for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melbin Baby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baby, M., Rajeev Kumar, K. Structural and optical characterization of stacked MoS2 nanosheets by hydrothermal method. J Mater Sci: Mater Electron 29, 4658–4667 (2018). https://doi.org/10.1007/s10854-017-8417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8417-x

Navigation