Skip to main content
Log in

Electro-catalytic and structural studies of DNA templated gold wires on platinum/ITO as modified counter electrode in dye sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

DNA templated gold wires (AuWs) were fabricated on Pt sputtered ITO (Pt/ITO) substrates using ‘scribing’ or ‘writing’ method to be used as a modified counter electrode (CE) in Dye sensitized solar cells. The gold nanoparticles (AuNPs) bind to DNA in aqueous solution due to the polyanionic nature of DNA. When a scribe is made on the dropcasted Au-DNA solution, the diffusion of Au-DNA complex occurs towards the edges of the scribe due to the coffee ring effect. Capillary force induces evaporation of water that also forces the Au-DNA complex to migrate towards the scribed edges. Meanwhile, the AuNPs are reduced on the surface of DNA to form active seed for nucleation and growth of AuWs. DNA molecules act as a scaffold to arrange the nanoparticles into well-connected submicron to nanoscale wires. The cyclic voltammetry measurements showed that AuWs/Pt/ITO CE exhibited better electro-catalytic activity and higher conductivity than conventional Pt/ITO CE due to the synergistic effect of Pt and AuWs network on ITO. The DSSC fabricated using TiO2 photoanode, N719 dye, I3 /I electrolyte and AuWs/Pt/ITO CE showed a 36% increase in efficiency as compared to the cells made under same parameters but using conventional (Pt/ITO) CE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. O’regan, M. Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353(6346), 737–740 (1991)

    Article  Google Scholar 

  2. B. Pradhan, S.K. Batabyal, A.J. Pal, Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91(9), 769–773 (2007)

    Article  Google Scholar 

  3. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18(3), 155–162 (2015)

    Article  Google Scholar 

  4. B. Roose, S. Pathak, U. Steiner, Doping of TiO2 for sensitized solar cells. Chem. Soc. Rev. 44(22), 8326–8349 (2015)

    Article  Google Scholar 

  5. K.H. Ko, Y.C. Lee, Y.J. Jung, Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions. J. Colloid Interface Sci. 283(2), 482–487 (2005)

    Article  Google Scholar 

  6. Z. Tian, H. Tian, X. Wang, S. Yuan, J. Zhang, X. Zhang, Z. Zou, Multilayer structure with gradual increasing porosity for dye-sensitized solar cells. Appl. Phys. Lett. 94(3), 031905 (2009)

    Article  Google Scholar 

  7. J.G. Chen, H.Y. Wei, K.C. Ho, Using modified poly (3, 4-ethylene dioxythiophene): Poly (styrene sulfonate) film as a counter electrode in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91(15), 1472–1477 (2007)

    Article  Google Scholar 

  8. X. Cui, W. Xu, Z. Xie, Y. Wang, High-performance dye-sensitized solar cells based on Ag-doped SnS 2 counter electrodes. J. Mater. Chem. A 4(5), 1908–1914 (2016)

    Article  Google Scholar 

  9. Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh, A. Zaban, PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J. Phys. Chem. C 115(13), 6162–6166 (2011)

    Article  Google Scholar 

  10. K.S. Lee, H.K. Lee, D.H. Wang, N.G. Park, J.Y. Lee, O.O. Park, J.H. Park, Dye-sensitized solar cells with Pt-and TCO-free counter electrodes. Chem. Commun. 46(25), 4505–4507 (2010)

    Article  Google Scholar 

  11. Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, L. Fan, Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochem. Commun. 10(9), 1299–1302 (2008)

    Article  Google Scholar 

  12. F. Gong, H. Wang, X. Xu, G. Zhou, Z.S. Wang, In situ growth of Co0. 85Se and Ni0. 85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134(26), 10953–10958 (2012)

    Article  Google Scholar 

  13. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, Q. Meng, Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 9(4), 596–598 (2007)

    Article  Google Scholar 

  14. Y. Noh, O. Song, Properties of an Au/Pt bilayered counter electrode in dye sensitized solar cells. Electron. Mater. Lett. 10(5), 981–984 (2014)

    Article  Google Scholar 

  15. S. Hinds, B.J. Taft, L. Levina, V. Sukhovatkin, C.J. Dooley, M.D. Roy, S.O. Kelley, Nucleotide-directed growth of semiconductor nanocrystals. J. Am. Chem. Soc. 128(1), 64–65 (2006)

    Article  Google Scholar 

  16. J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, Q. Li, Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 44(17), 6330–6374 (2015)

    Article  Google Scholar 

  17. K. Vijayaraghavan, S.P. Nalini, Biotemplates in the green synthesis of silver nanoparticles. Biotechnol. J. 5(10), 1098–1110 (2010)

  18. J. Song, S. Hwang, S. Park, T. Kim, K. Im, J. Hur, N. Park, DNA templated synthesis of branched gold nanostructures with highly efficient near-infrared photothermal therapeutic effects. RSC Adv. 6(57), 51658–51661 (2016)

    Article  Google Scholar 

  19. J.D. Le, Y. Pinto, N.C. Seeman, K. Musier-Forsyth, T.A. Taton, R.A. Kiehl, DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4(12), 2343–2347 (2004)

    Article  Google Scholar 

  20. R. Seidel, C. Ciacchi, L. Weigel, M. Pompe, W., & M. Mertig, Synthesis of platinum cluster chains on DNA templates: conditions for a template-controlled cluster growth. J. Phys. Chem. B 108(30), 10801–10811 (2004)

    Article  Google Scholar 

  21. H.A. Becerril, P. Ludtke, B.M. Willardson, A.T. Woolley, DNA-templated nickel nanostructures and protein assemblies. Langmuir 22(24), 10140–10144 (2006)

    Article  Google Scholar 

  22. J. Richter, M. Mertig, W. Pompe, I. Mönch, H.K. Schackert, Construction of highly conductive nanowires on a DNA template. Appl. Phys. Lett. 78(4), 536–538 (2001)

    Article  Google Scholar 

  23. Y.Y. Foo et al., Curcuma mangga-mediated synthesis of gold nanoparticles: characterization, stability, cytotoxicity, and blood compatibility. Nanomaterials 7(6), 123 (2017)

    Article  Google Scholar 

  24. V. Periasamy, N. Rizan, H.M.J. Al-Ta’ii, Y.S. Tan, H.A. Tajuddin, M. Iwamoto, Measuring the electronic properties of DNA-specific Schottky diodes towards detecting and identifying basidiomycetes DNA. Sci. Rep. 6, 29879 (2016)

    Article  Google Scholar 

  25. V. Periasamy, G.P. Ciniciato, K. Yunus, A.C. Fisher, Fabrication of capillary-force-induced DNA-templated Ag wires assisted by enzymatic etching. Appl. Phys. Express 8(2), 027002 (2015)

    Article  Google Scholar 

  26. P. Vengadesh, G.P.M.K. Ciniciato, C. Zhijian, M. Musoddiq, A.C. Fisher, K. Yunus, Capillary force assisted fabrication of DNA templated silver wires. RSC Adv. 5(11), 8163–8166 (2015)

    Article  Google Scholar 

  27. O.F. Sarioglu, R. Tekiner-Gursacli, A. Ozdemir, T. Tekinay, Comparison of Au (III) and Ga (III) ions’ binding to calf thymus DNA: spectroscopic characterization and thermal analysis. Biol. Trace Elem. Res. 160(3), 445–452 (2014)

    Article  Google Scholar 

  28. S. Shakir, Z.S. Khan, A. Ali, N. Akbar, W. Musthaq, Development of copper doped titania based photoanode and its performance for dye sensitized solar cell applications. J. Alloys Compd. 652, 331–340 (2015)

    Article  Google Scholar 

  29. H. Li, J.D. Carter, T.H. LaBean, Nanofabrication by DNA self-assembly. Mater. Today 12(5), 24–32 (2009)

    Article  Google Scholar 

  30. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827 (1997)

    Article  Google Scholar 

  31. J. Zeng, Q. Zhang, J. Chen, Y. Xia, A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 10(1), 30–35 (2009)

    Article  Google Scholar 

  32. D.R. Whelan, K.R. Bambery, P. Heraud, M.J. Tobin, M. Diem, D. McNaughton, B.R. Wood, Monitoring the reversible B to A-like transition of DNA in eukaryotic cells using Fourier transform infrared spectroscopy. Nucleic Acids Res. 39(13), 5439–5448 (2011)

    Article  Google Scholar 

  33. H. Arakawa, J.F. Neault, H.A. Tajmir-Riahi, “Silver (I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophys. J. 81(3), 1580–1587 (2001)

    Article  Google Scholar 

  34. E.V. Hackl, V. Svetlana, P. Kornilova, Yurij, Blagoi, DNA structural transitions induced by divalent metal ions in aqueous solutions. Int. J. Biol. Macromol. 35(3), 175–191 (2005)

    Article  Google Scholar 

  35. K. Sim, S.J. Sung, H.J. Jo, D.H. Jeon, D.H. Kim, J.K. Kang, Electrochemical investigation of high-performance dye-sensitized solar cells based on molybdenum for preparation of counter electrode. Int. J. Electrochem. Sci. 8, 8272–8281 (2013)

    Google Scholar 

  36. Y. Li, W. Shi, A. Gupta, N. Chopra, Morphological evolution of gold nanoparticles on silicon nanowires and their plasmonics. RSC Adv. 5(61), 49708–49718 (2015)

    Article  Google Scholar 

  37. Y. Kim, Seok et al., Building a hybrid nanocomposite assembly of gold nanowires and thienyl-derivative fullerenes to enhance electron transfer in photovoltaics. J. Mater. Chem. A 1(16), 5015–5020 (2013)

    Article  Google Scholar 

  38. C. Dablemont, P. Lang, C. Mangeney, J.Y. Piquemal, V. Petkov, F. Herbst, G. Viau, FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 24(11), 5832–5841 (2008)

    Article  Google Scholar 

  39. T.Y. Suman, S.R. Rajasree, R. Ramkumar, C. Rajthilak, P. Perumal, The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim. Acta Part A 118, 11–16 (2014)

    Article  Google Scholar 

  40. S.M. Watson, N.G. Wright, B.R. Horrocks, A. Houlton, Preparation, characterization and scanned conductance microscopy studies of DNA-templated one-dimensional copper nanostructures. Langmuir 26(3), 2068–2075 (2009)

    Article  Google Scholar 

  41. V.D. Dao, S.H. Kim, H.S. Choi, J.H. Kim, H.O. Park, J.K. Lee, Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode. J. Phys. Chem. C 115(51), 25529–25534 (2011)

    Article  Google Scholar 

  42. E. Ramasamy, J. Lee, Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells. Carbon 48(13), 3715–3720 (2010)

    Article  Google Scholar 

  43. V.D. Dao, H.S. Choi, Pt nanourchins as efficient and robust counter electrode materials for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(1), 1004–1010 (2015)

    Article  Google Scholar 

  44. B. He, Q. Tang, T. Liang, Q. Li, Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes. J. Mater. Chem. A 2(9), 3119–3126 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Funding from UMCoE RU Grant: RU003-2017 (IOES), Malaysian Research Grant: FP038-2017A, Postgraduate Research Grant (PPP) Grant: PG157-2015A and funding from National University of Sciences and Technology (NUST), Pakistan is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vengadesh Periasamy.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakir, S., Foo, Y.Y., Rizan, N. et al. Electro-catalytic and structural studies of DNA templated gold wires on platinum/ITO as modified counter electrode in dye sensitized solar cells. J Mater Sci: Mater Electron 29, 4602–4611 (2018). https://doi.org/10.1007/s10854-017-8411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8411-3

Navigation