Skip to main content
Log in

Good electrical performances and impedance analysis of (1 − x)KNN–xBMM lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)(K0.5Na0.5)NbO3xBi(Mg0.75Mo0.25)O3 [(1 − x)KNN–xBMM] (x = 0.005, 0.01, 0.02) ceramics were prepared via a solid-state reaction method. X-ray diffraction patterns (XRD) and Raman spectrum showed that a solid solution was formed between the BMM and KNN, which improved the electrical properties of KNN. With increasing the BMM content, the grain firstly increased and then decreased. When x = 0.01, the ceramics exhibited the optimized microstructure, indicating that there exits an optimal doping component. Temperature dependence of relative permittivity also increases firstly and then decreases. The relative permittivity (εr) of ~ 1418 in stabilization zone, εmax ~ 4861 at the Curie temperature T C ~ 394 °C, good temperature stability ∆ε/ε123 °C ≤ ± 15% from 123 °C to 348 °C, and the dielectric loss tanδ ≤ 0.036 from 109 to 348 °C were obtained for 0.99KNN-0.01BMM ceramics. Conductivity behavior of the (1 − x)KNN–xBMM was investigated as a function of temperature from 420 to 520 °C and frequency from 40 to 106 Hz, showing that the basic mechanisms of conduction and relaxation processes were thermally activated, and oxygen vacancies were the possible ionic charge transport carriers at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.E. Jaeger, L. Egerton, Hot pressing of potassium–sodium niobates. J. Am. Ceram. Soc. 45, 209–213 (1962)

    Article  Google Scholar 

  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature 432, 84–87 (2004)

    Article  Google Scholar 

  3. B. Malič, A. Benčan, T. Rojac, Lead-free piezoelectrics based on alkaline niobates synthesis, sintering and microstructure. Acta Chim. Slov 55, 719–726 (2008)

    Google Scholar 

  4. K. Wang, J.F. Li, (K0.5Na0.5)NbO3-based lead-free piezoceramics: phase transition, sintering and property enhancement. J. Adv. Ceram. 1, 24–37 (2012)

    Article  Google Scholar 

  5. Y.P. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)

    Article  Google Scholar 

  6. J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89, 706–709 (2006)

    Article  Google Scholar 

  7. E.A. Wood, Polymorphism in potassium niobate, sodium niobate, and other ABO3 compounds. Acta Crystalallogr. 4, 353 – 362 (1951)

    Article  Google Scholar 

  8. L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl. Phys. A. 104, 1047 (2011)

    Article  Google Scholar 

  9. E. Atamanik, V. Thangadurai, Study of the dielectric properties in the NaNbO3–KNbO3–In2O3 system using AC impedance spectroscopy. Mater. Res. Bull. 44, 931–936 (2009)

    Article  Google Scholar 

  10. Y. Zhen, J. Li, Normal sintering of (K,Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J. Am. Ceram. Soc. 89, 3669–3675 (2006)

    Article  Google Scholar 

  11. A. Safari, M. Hejazi, Lead-free, piezoelectric materials Springer. 02, 139–175 (2012)

    Google Scholar 

  12. H.L. Cheng, H.L. Du, W.C. Zhou, D.M. Zhu, F. Luo, B.X. Xu, Bi(Zn2/3Nb1/3)O3–(K0.5Na0.5)NbO3 high-temperature lead-free ferroelectric ceramics with low capacitance variation in a broad temperature usage range. J. Am. Ceram. Soc. 96, 833–837 (2013)

    Article  Google Scholar 

  13. G.F. Liu, X.L. Chen, G.S. Huang, D.D. Ma, H.F. Zhou, Good thermal stability and improved piezoelectric properties of K0.5Na0.5)NbO3–Bi(Mg0.75W0.25)O3 solid solutions. J. Mater. Sci. 28, 3931–3935 (2017)

    Google Scholar 

  14. X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, Thermally stable BaTiO3–Bi(Mg2/3Nb1/3)O3 solid solution with high relative permittivity in a broad temperature usage range. J. Am. Ceram. Soc. 98, 804–810 (2015)

    Article  Google Scholar 

  15. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 82905–182905-3 (2005)

    Article  Google Scholar 

  16. S.N. Seo, J.H. Cho, B.I. Kim, E.S. Kim, Relationships between crystal structure and electrical properties of Li0.055[Ag x (K0.5Na0.5)1–x ]0.945 (Nb1 – yTay)O3 ceramics, Ceram. Int. 38, S327–S330 (2012)

    Article  Google Scholar 

  17. T. Zheng, H.J. Wu, Y. Yuan, X. Lv, Q. Li, T.L. Men, C.L. Zhao, D.Q. Xiao, J.G. Wu, K. Wang, et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci 10, 528–537 (2017)

    Article  Google Scholar 

  18. A.L. Efros, On the theory of a.c conduction in amorphous semiconductors and chalcogenide glasses. Philos. Mag. B 43, 829–838 (1981)

    Article  Google Scholar 

  19. L.A.K. Dominik, R.K. Maccrone, Dielectric relaxations in reduced rutile at low temperatures. Phys. Rev 163, 756–768 (1967)

    Article  Google Scholar 

  20. W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics. J. Am. Ceram. Soc. 94, 4317–4322 (2011)

    Article  Google Scholar 

  21. X.P. Wang, J.G. Wu, X.J. Cheng, B.Y. Zhang, J.G. Zhu, D.Q. Xiao, Compositional dependence of phase structure and electrical properties in (K0.5Na0.5)00.97Bi0.01(Nb1 – x Zr x )O3 lead-free ceramics, Ceram. Int 39, 8021–8024 (2013)

    Article  Google Scholar 

  22. R.Z. Zuo, C. Ye, X.S. Fang, Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3–BiScO3 ceramics. Jpn. J. Appl. Phys 46, 6733–6736 (2007)

    Article  Google Scholar 

  23. L. Liu, D. Shi, S. Zheng, and et al, Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Mater. Chem. Phys. 139, 844–850 (2013)

    Article  Google Scholar 

  24. J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, Effect of (Bi0.5K0.5)TiO3 on the electrical properties, thermal and fatigue behavior of (K0.5Na0.5)NbO3-based lead-free piezoelectrics. J. Mater. Res. 30, 2018–2019 (2015)

    Article  Google Scholar 

  25. D.M. Lin, K.W. Kwok, H.L.W. Chan, J. Phys. D. 40, 6778–6783 (2007)

    Article  Google Scholar 

  26. Y. Shi, Z.G. Jin, Z.J. Cheng, X.Z. Wei, T.X. Xu, Effect of SrO or SnO2 addition on the dielectric properties of Ba4.5(Nd0.84Bi0.16)Ti18O54 microwave ceramics., J. Chin. Ceram. Soc. 571–574 (2003)

  27. A. Munpakdee, K. Pengpat, T. Tunkasiri, The study of dielectric diffuseness in the Ba(Mg1/3Nb2/3)O3–BaTiO3 ceramic system. Smart Mater. Struct. 15, 1225 (2006)

    Article  Google Scholar 

  28. C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3. Phys. Rev. B 62, 228–236 (2000)

    Article  Google Scholar 

  29. S. Steinsvik, R. Bugge, J. Gjønnes, J. Taftø, T. Norby, The defect structure of SrTi1 – x FeO3 – y (x = 0–0.8) investigated by electrical conductivity measurements and electron energy loss spectroscopy (EELS). J. Phys. Chem. Solids 58, 969–976 (1997)

    Article  Google Scholar 

  30. X.L. Chen, Y.L. Wang, J. Chen, H.F. Zhou, L. Fang, L.J. Liu, Dielectric Properties and Impedance Analysis of K0.5Na0.5NbO3–Ba2NaNb5O15 Ceramics with Good Dielectric Temperature Stability. J. Am. Ceram. Soc. 96, 3489–3493 (2013)

    Article  Google Scholar 

  31. V. Bhosle, A. Tiwari, J. Narayan, Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Appl. Phys. Lett. 88, 032106–032106-3 (2006)

    Article  Google Scholar 

  32. A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Electric permittivity and conductivity of (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics. Solid State Ion 176, 1439–1447 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 11364012 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFDA198027, 2015GXNSFDA139033 and 2017GXNSFFA198011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuli Chen or Hailin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Chen, X., Li, X. et al. Good electrical performances and impedance analysis of (1 − x)KNN–xBMM lead-free ceramics. J Mater Sci: Mater Electron 29, 4538–4546 (2018). https://doi.org/10.1007/s10854-017-8403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8403-3

Navigation