Skip to main content
Log in

Effect of 3d transition metal doping (Co, Ni and Cu) on structural, optical, morphological and dielectric properties of sol–gel assisted auto-combusted Mg0.95Mn0.05O nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We hereby report the synthesis of Mg0.95Mn0.05O nanostructures using auto-combustion method. Effect of incorporation of different transition metal dopants (cobalt, nickel and copper) on structural, optical, morphological and dielectric properties of pristine Mg0.95Mn0.05O is investigated. X-ray diffraction plots confirm the cubic crystal structure of these samples. The crystallite size is found to be 78.2, 67.02, 78.11 and 64 nm for pure, Co, Cu and Ni doped MgMnO, respectively. Raman analysis clearly envisages the purity of the presently synthesized samples. Optical transmission spectrum shows that samples are highly transparent in the UV–Visible region. In addition, the FTIR results established the presence of magnesium oxide in all samples. Dielectric characterization depicts a reasonable decrease in the dielectric constant ε′ as function of improving frequency, which in turn confirms its dispersive nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E.W. McFarland, H. Metiu, Catalysis by doped oxides. Chem. Rev. 113, 4391–4427 (2013)

    Article  Google Scholar 

  2. N. Nilius, H.-J. Freund, Activating nonreducible oxides via doping. Acc. Chem. Res. 48, 1532–1539 (2015)

    Article  Google Scholar 

  3. M.H. Rummeli, C. Kramberger, A. Gruneis, P. Ayala, T. Gemming, B. Buchner et al., On the graphitization nature of oxides for the formation of carbon nanostructures. Chem. Mater. 19, 4105–4107 (2007)

    Article  Google Scholar 

  4. W.D. Kingery, Introduction to Ceramics, (Wiley, New York, 1960), pp. 193, 408, 682

    Google Scholar 

  5. J. Bai, F. Meng, C. Wei, Y. Zhao, H. Tan, J. Liu, Solution combustion synthesis and characteristics of nanoscale MgO powders. Ceram. Silik. 55(1), 20–25 (2011)

    Google Scholar 

  6. B. Vatsha, P. Tetyana, P.M. Shumbula, J.C. Ngila, L.M. Sikhwivhil, R.M. Moutloali, Effects of precipitation temperature on nanoparticle surface area and antibacterial behaviour of Mg(OH)2 and MgO nanoparticles. J. Biomater. Nanobiotechnol. 4, 365–373 (2013)

    Article  Google Scholar 

  7. P. Tamilselvi, A. Yelilarasi, M. Hema, R. Anbarasan, Synthesis of hierarchical structured MgO by Sol–Gel method. Nano Bull. 2(1), 130106 (2013)

    Google Scholar 

  8. H. Hayashi, Y. Hakuta, Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3, 3794–3817 (2010)

    Article  Google Scholar 

  9. Y. Hou, J. Yu, S. Gao, Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. J. Mater. Chem 13, 1983–1987 (2003)

    Article  Google Scholar 

  10. H. Mirzaei, A. Davoodnia, Microwave assisted Sol-Gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of Hantzsch 1,4-dihydropyridines.” Chin. J. Catal. 33, 1502–1507 (2012)

    Article  Google Scholar 

  11. A.B. Patil, B.M. Bhanage, Novel and green approach for the nano crystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt condensation. Catal. Commun. 36, 79–83 (2013)

    Article  Google Scholar 

  12. F. Stavale, N. Nilius, H.-J. Freund, New J. Phys. 14, 033006 (2012)

    Article  Google Scholar 

  13. A. Shalimov, K. Potzger, D. Geiger, H. Lichte, G. Talut, A. Misiuk, H. Reuther, F. Stromberg, S. Zhou, C. Baehtz, J. Fassbender, J. App. Phys. 105, 064906, (2009)

    Article  Google Scholar 

  14. S. Ramachandran, J. Narayan, J.T. Prater, Appl. Phys. Lett. 90(13), 222505 (2007)

    Article  Google Scholar 

  15. R. Wahab, S.G. Ansari, M.A. Dar, Y.S. Kim, H.S. Shin, Mater. Sci. Forum. 558–559, 983–986 (2007)

    Article  Google Scholar 

  16. T. Chandel, J. Singh, P. Rajaram, AIP Conf. Proc. 1675, 0200321–0200324 (2015)

    Google Scholar 

  17. M.A. Dar, P. Narwaria, S. Barfa, D. Varshney, AIP Conf. Proc. 1832, 050052, (2017)

    Article  Google Scholar 

  18. U. Verma, V. Thakur, P. Rajaram, A.K. Shrivastava, Electron. Mater. Lett. 11(1), 46–54 (2015)

    Article  Google Scholar 

  19. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, Dependence of energy gap on x and T in Zn1−x Mnx Se: the role of exchange interaction. Phys. Rev. B 33, 8207–8215 (1986)

    Article  Google Scholar 

  20. J. Wu, H. Yan, X. Zhang, L. Wei, X. Liu, B. Xu, J. Colloid Interface Sci. 324, 167–171 (2008)

    Article  Google Scholar 

  21. K.C. Barick, S. Sing, M. Aslam, D. Bahadur, Microporous Mesoporous Mater. 134, 195–202 (2010)

    Article  Google Scholar 

  22. D. Varshney, S. Dwivedi, Mater. Res. Express 2, 106102 (2015)

    Article  Google Scholar 

  23. S. Demirezen, A. Kaya, S.A. Yeriskin, M. Balbasi, I. Uslu, Results Phys. 6, 180–185 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are very thankful to UGC-DAE CSR, Indore for providing the necessary characterization facilities. I. Islam also wants to acknowledge Prof. Dinesh Varsheney, School of Physics, Devi Ahliya University, Khandwa Road Campus Indore-452001 India, for useful discussions and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Ahmad Khandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, I., Khandy, S.A., Zaman, M.B. et al. Effect of 3d transition metal doping (Co, Ni and Cu) on structural, optical, morphological and dielectric properties of sol–gel assisted auto-combusted Mg0.95Mn0.05O nanoparticles. J Mater Sci: Mater Electron 29, 3952–3956 (2018). https://doi.org/10.1007/s10854-017-8335-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8335-y

Navigation