Skip to main content

Advertisement

Log in

Synthesis, structural and high frequency dielectric properties of polypyrrole (PPy)/holmium ferrite composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Conducting polymers and their composites are receiving considerable attention due to their applications in commercial and domestic appliances based on their electrical, optical and thermal properties. Also the magnetic and conducting properties of ferrite/polypyrrole (PPy) composites have opened a new horizon in multifunctional materials. In the present study, different properties of PPy, holmium substituted ferrite and their composites have been investigated. Prior to that, PPy was prepared by the chemical polymerization method of pyrrole in the presence of FeCl3⋅6H2O. Holmium substituted ferrite Co0.02Ho1.98Fe2O4 was prepared by using co-precipitation technique. The X-ray diffraction (XRD) pattern showed crystalline ferrite phase having an average crystallite size of 27 nm. Composites with different ratios of ferrite and PPy were fabricated using solid state reaction technique. The structural and morphological properties of PPy/Ferrite composites were studied by XRD and scanning electron microscopy (SEM), respectively. Frequency dependent dielectric properties were studied in the range of 1 MHz-3 GHz; the dielectric constant value for composite is higher than that for the holmium ferrite. The higher dielectric constant of the composite indicates that these materials have better ability to store potential energy under the influence of alternating electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Tourillon, Handbook of Conducting Polymer, vol. 1, ed. by T.A. Skotheim (Marcel Dekker, New York, 1986), pp. 293–350

    Google Scholar 

  2. T.A. Skotheim, Handbook of Conducting Polymers, vols. 1–2 (Marcel Dekker, New York, 1986), pp. 190–200

    Google Scholar 

  3. L. Qie, L.X. Yuan, W.X. Zhang, W.M. Chen, Y-H, Hang, J. Electrochem. Soc. 159, A1624 (2012)

    Article  Google Scholar 

  4. T.N. Shoa, J.D.W. Maddan, T. Mirffakhari, G.M. Spinks, G.G. Wallace, Sens. Actuators A 161, 127 (2012)

    Article  Google Scholar 

  5. H.J. Lee, S.M. Park, J. Phys. Chem. 109, 13247 (2005)

    Article  Google Scholar 

  6. X.B. Chen, J. Devaux, J.P. Issi., D. Billaud, Eur. Polym. J. 30(7), 809 (1994)

    Article  Google Scholar 

  7. J. Heinze, B.A. Frontana-Uribe, S. Ludwings, Chem. Rev. 110, 4724 (2010)

    Article  Google Scholar 

  8. G. Murtaza, I. Ahmad, A. Hakeem, P. Mao, X. Gouhua, M.T. Farid, G. Mustafa, M. Kanwal, M. Hussain, Dig. J. Nanomater. Biostruct. 10(4), 1393 (2015)

    Google Scholar 

  9. A. Hakeem, G. Murtaza, I. Ahmad, P. Mao, X. Gouhua, M.T. Farid, M. Kanwal, G. Mustafa, M. Hussain, M. Ahmad, Dig. J. Nanomater. Biostruct. 11(1), 149 (2016)

    Google Scholar 

  10. X. Huang, J. Zhang, W. Rao, T. Sang, B. Song, C. Wong. J. Alloys Compd. 662, 409 (2016)

    Article  Google Scholar 

  11. X. Huang, J. Zhang, Z. Liu, T. Sang, B. Song, H. Zhu, C. Wong. J. Alloys Compd. 648, 1072 (2015)

    Article  Google Scholar 

  12. X. Huang, J. Zhang, M. Lai, T. Sang, J. Alloys Compd. 627, 367 (2015)

    Article  Google Scholar 

  13. S.H. Hosseini, A. Asadnia, M. Moloudi, Mater. Res. Innov. 19(2), 107 (2015)

    Article  Google Scholar 

  14. A. Elahi, A. Shakoor, M. Irfan, K. Mahmood, N.A. Niaz, M.S. Awan, T. Bashir, J. Mater. Sci.: Mater. Electron. 27, 6964 (2016)

    Google Scholar 

  15. A. Shakoor, H. Anwar, T.Z. Rizvi, J. Compos. Mater. 42, 2101 (2008)

    Article  Google Scholar 

  16. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Boston, 1959)

    Google Scholar 

  17. K. Deepika, P. Sumitra, J.S. Baijal, J. Mater. Sci. 25, 5142 (1990)

    Article  Google Scholar 

  18. Y. Li, B. Ying, L. Hong, M. Yang, Synth. Met. 160, 455 (2010)

    Article  Google Scholar 

  19. M. Selvarange, S. Palraj, K. Murathan, G. Rajgopal, G. Venkatachari, J. Synth. Met. 158, 3499 (2004)

    Google Scholar 

  20. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, London, 1873)

    Google Scholar 

  21. B.A. Afzal, M.J. Akhtar, M. Nadeem, M.M. Hassan, J. Phys. Chem. C 113, 17560 (2009)

    Article  Google Scholar 

  22. K.W. Wagner, Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  23. C.F. Jafferson, C.K. Baker, IEEE Trans. Magn. 4, 460 (1968)

    Article  Google Scholar 

  24. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  25. M.T. Ramesan, Polym. Plast. Technol. Eng. 51, 1223 (2012)

    Article  Google Scholar 

  26. M. Zhang, J. Zhai, L. Xin, X. Yao, Mater. Chem. Phys. 197, 36 (2017)

    Article  Google Scholar 

  27. A.M. Shaikh, S.S. Bellad, B.K. Chougule, J. Magn. Magn. Mater. 195, 384 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research at King Saud University for providing the funding for this research through the Research Group Project No. RGP-1436-019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghulam Murtaza or Mukhtar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qasim, M., Ahmad, N., Ahmad, I. et al. Synthesis, structural and high frequency dielectric properties of polypyrrole (PPy)/holmium ferrite composites. J Mater Sci: Mater Electron 29, 3884–3890 (2018). https://doi.org/10.1007/s10854-017-8326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8326-z

Navigation