Skip to main content
Log in

Polypyrrole and its nanocomposites with Zn0.5Ni0.4Cr0.1Fe2O4 ferrite: preparation and electromagnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy)–Zn0.5Ni0.4Cr0.1Fe2O4 core–shell nanocomposites have been fabricated by in situ chemical polymerization of pyrrole in the presence of ZnNiCr ferrite nanoparticles. The samples were characterized by X-ray diffractometer, FTIR spectroscopy, TGA/DTA analysis and field emission scanning electron microscopy (FE-SEM). Dielectric and Magnetic properties were investigated by using impedance analyzer and vibrating sample magnetometer respectively. The results of XRD, FTIR showed the presence of the two intended phases. FE-SEM results confirm the formation of core–shell structure. Possible bonding effect between metal cations and PPy resulted in the decrease of the conductivity with increase of ferrite content. Below 500 °C, the TGA and DTA results confirm the thermal stability of these samples. Incorporation of ferrites in the conducting Polypyrrole matrix leads to higher values of dielectric constant and dielectric loss. Under applied magnetic field, the Hysteresis measurements revealed that coercivity, saturation magnetization and remanance were tuned to such values that made the investigated samples suitable for microwave devices and switching applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.Q. Zhang, M.Z. Rong, K. Friedrich, in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, vol. 2: Nanocomposites, ed. by H.S. Nalwa (American Scientific Publishers, Stevenson Ranch, 2003), p. 113

  2. S.J. Ding, C.L. Zhang, M. Yang, X.Z. Qu, Y.F. Lu, Z.Z. Yang, Polymer 47, 8360 (2006)

    Article  Google Scholar 

  3. Z.W. Niu, Z.Z. Yang, Z.B. Hu, Y.F. Lu, C.C. Han, Adv. Funct. Mater. 13, 949 (2003)

    Article  Google Scholar 

  4. X.M. Feng, C.J. Mao, W.H. Hou, J.J. Zhu, Langmuir 22, 4384 (2006)

    Article  Google Scholar 

  5. X. Lu, Y. Yu, L. Chen, H. Mao, H. Gao, J. Wang, W. Zhang, Y. Wei, Nanotechnology 16, 1660 (2005)

    Article  Google Scholar 

  6. S. Velusamy, T. Punniyamurthy, Eur. J. Org. Chem. 2003, 3913 (2003)

    Article  Google Scholar 

  7. Y.J. Liu, X.H. Li, H.J. Guo, Z.X. Wang, Q.Y. Hu, W.J. Peng, Y.J. Yang, Power Sour. 189, 721 (2009)

    Article  Google Scholar 

  8. Y.E. Xiao, C.M. Li, Electroanalysis 20, 648 (2008)

    Article  Google Scholar 

  9. F. Caruso, Adv. Mater. 13, 11 (2001)

    Article  Google Scholar 

  10. H. Ding, X.-M. Liu, M. Wan, S.-Y. Fu, J. Phys. Chem. 112, 9289 (2008)

    Article  Google Scholar 

  11. H. Zhong-ai, H-x Zhao, C. Kong, Y-y Yang, X-l Shang, L-j Ren et al., J. Mater. Sci. Mater. Electron. 17, 859 (2006)

    Article  Google Scholar 

  12. L.C. Li, J. Jiang, F. Xu, Eur. Polym. J. 42, 2221 (2006)

    Article  Google Scholar 

  13. J. Jiang, L.C. Li, F. Xu, Chin. J. Chem. 24, 1804 (2006)

    Article  Google Scholar 

  14. S.A. Mazen, M.H. Abdallah, B.A. Sabrals, H.A.M. Hashem, Phys. Stat. Solidi 134, 263 (1992)

    Article  Google Scholar 

  15. I. Seo, M. Pyo, G. Cho, Langmuir 18, 7253 (2002)

    Article  Google Scholar 

  16. P. Kerschl, R. Grössinger, C. Kussbach, R. Sato-Turtelli, K.H. Muller, L. Schultz, J. Magn. Magn. Mater. 242e245, 1468 (2002)

  17. L. Ai, Y. Zeng, Chem. Eng. J. 215–216, 259 (2012)

    Google Scholar 

  18. B. Unal, Z. Durmus, A. Baykal, H. Sozeri, M.S. Toprak, L. Alpsoy, J. Alloys Compd. 505, 172 (2010)

    Article  Google Scholar 

  19. X. Zhang, J. Zhang, Z. Liu, C. Robinson, Chem. Commun. 10, 1852 (2004)

    Article  Google Scholar 

  20. J.H. Park, M.J. Ko, O.O. Park, J. Power Sour. 105, 20 (2002)

    Article  Google Scholar 

  21. T. Ozkaya, M.S. Toprak, A. Baykal, H. Kavas, Y. Koseoglu, B. Aktas, J. Alloys Compd. 472, 18 (2009)

    Article  Google Scholar 

  22. R. Kostic, D. Rakovic, S.A. Stepanyan, I.E. Davidova, L.A. Gribov, J. Chem. Phys. 102, 3104 (1995)

    Article  Google Scholar 

  23. W. Chen, X. Li, G. Xue, Z. Wang, W. Zou, Appl. Surf. Sci. 218, 216 (2003)

    Article  Google Scholar 

  24. J. Liu*, J. Zhang, Y. Li, M. Zhang, Mater. Chem. Phys. 163 (2015) 470

  25. Chang Sun, Kangning Sun, Phys. B 391, 335 (2007)

    Article  Google Scholar 

  26. R. Kostic, D. Rakovic, S.A. Stepanyan, I.E. Davidova, L.A. Gribov, J. Chem. Phys. 102, 3104 (1995)

    Article  Google Scholar 

  27. W. Chen, X. Li, G. Xue, Z. Wang, W. Zou, Appl. Surf. Sci. 218, 216 (2003)

    Article  Google Scholar 

  28. C.L. Helsey, J.P. Wightman, E.H. Pittaman, H.H. Kuhn, Text. Res. 63, 247 (1993)

    Article  Google Scholar 

  29. S.C. Watawe, B.D. Sarwede, S.S. Bellad, B.D. Sutar, B.K. Chougule, J. Magn. Magn. Mater. 214, 55 (2000)

    Article  Google Scholar 

  30. D. Ravinder, Mater. Lett. 40, 205 (1999)

    Article  Google Scholar 

  31. N. Gandhi, K. Singh, A. Ohlan, D.P. Singh, S.K. Dhawan, Compos. Sci. Technol. 71, 1754 (2011)

    Article  Google Scholar 

  32. K.S. Tan, W.C. Gan, T.S. Velayutham, W.H. AbdMajid, Smart Mater. Struct. 23, 1 (2014)

    Article  Google Scholar 

  33. Y. Huang, Y.Q. Li, Y. Wang, J. Magn. Magn. Mater. 368, 133 (2014)

    Article  Google Scholar 

  34. D.S. Pramila Devi, P.K. Bipinbal, T. Jabin, Sunil K.N. Kutty. Mater. Des. 43, 337 (2013)

    Article  Google Scholar 

  35. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, London, 1979)

    Google Scholar 

  36. M.J. Iqbal, M.N. Ashiq, P.H. Gomez, J.M. Munoz, Scr. Mater. 57, 1093 (2007)

    Article  Google Scholar 

  37. Y. Wang, Y. Huang, Q.F. Wang, Q. He, L. Chen, Appl. Surf. Sci. 259, 486 (2012)

    Article  Google Scholar 

  38. J. Jiang, L.C. Li, F. Xu, Mater. Sci. Eng., A 456, 300 (2007)

    Article  Google Scholar 

  39. M. Bakr Mohamed, K. EL-Sayed, Compos. Part B 56, 270 (2014)

    Article  Google Scholar 

  40. M. Ahmed, R. Grossinger, I. Ali, I. Ahmad, M.U. Rana, J. Alloys Compd. 577, 382 (2013)

    Article  Google Scholar 

  41. M.N. Ashiq, M.J. Iqbal, I.H. Gul, J. Magn. Magn. Mater. 323, 259 (2011)

    Article  Google Scholar 

  42. I. Panneer Muthuselvam, R.N. Bhowmik, J. Magn. Magn. Mater. 322, 767 (2010)

    Article  Google Scholar 

  43. M.M. Rashad, R.M. Mohamed, H. El-Shall, J. Mater. Process. Technol. 198, 139 (2008)

    Article  Google Scholar 

  44. L. Zhao, H. Yang, X. Zhao, L. Yu, Y. Cui, S. Feng, Mater. Lett. 60, 1 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Directorate of Research and Extended Linkages, BZU, Multan under Grant # DR & EL/D-234/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmat Elahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elahi, A., Shakoor, A., Irfan, M. et al. Polypyrrole and its nanocomposites with Zn0.5Ni0.4Cr0.1Fe2O4 ferrite: preparation and electromagnetic properties. J Mater Sci: Mater Electron 27, 6964–6973 (2016). https://doi.org/10.1007/s10854-016-4651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4651-x

Keywords

Navigation