Skip to main content
Log in

Detailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The primary contributions of this study are not only to explore the role of diffusion annealing temperature interval 650 to 850 °C on the formation of effective electron–phonon coupling or cooper-pair probabilities (percentage of clusters in the superconducting path), densities of active and dynamic electronic states at Fermi energy level, stabilization of superconductivity in the homogeneous regions, overlapping of Cu-3d and O-2p wave functions and bond strengths in the crystal matrix of Ni surface-layered Bi-2223 polycrystalline ceramics, but also to determine the temperature-dependent diffusion fast-rate and required minimum activation energy for the diffusion of Ni foreign impurities into the bulk Bi-2223 superconducting crystal structure for the first time. The dc electrical measurement results obtained show that the optimum diffusion annealing temperature is found to be 700 °C for the penetration of optimum Ni concentration into the Bi-2223 crystal lattice so that the ceramic compound exposed to 700 °C annealing temperature exhibits the highest electrical and superconducting properties. In this respect, the material with the minimum electrical resistivity parameters of Δρ, ρ 115K , ρ res and ρ norm obtains the maximum superconducting characteristics of \(T_{c}^{{onset}}\), \(T_{c}^{{offset}}\) and RRR. Accordingly, the annealing temperature of 700 °C promotes the Bi-2223 ceramics for usage in the engineering, electro-optic, industrial and large scale applications. At the same time, the diffusion coefficients [D = Doexp(E/kBT)] determined at annealing temperature ranging from 650 to 850 °C are observed to be much more significant at rather higher temperatures as compared to lower temperatures. The temperature-dependent Ni diffusion coefficient is determined to be D = 3.9707 × 10− 7exp[− 1.132 eV/kBT] for the Bi-2223 particulate solid material. Namely, the diffusion coefficient is calculated to be about 3.9707 × 10− 7cm2 s− 1 when the required minimum activation energy for the introduction of heavy metal Ni ions to the bulk Bi-2223 crystal structure is computed to be about 1.132 eV, being one of the most striking points deduced form this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, Joining of Bi-2212 high-T-c superconductors and metals using indium solders. Physica C 463, 464–467 (2007)

    Article  Google Scholar 

  2. M. Chen, W. Paul, M. Lakner, L. Donzel, M. Hoidis, P. Unternaehrer, R. Weder, M. Mendik, 6.4 MVA resitive fault current limiter based on Bi-2212 superconductor. Physica C 372, 1657–1663 (2002)

    Article  Google Scholar 

  3. J.D. Hodge, H. Muller, D.S. Applegate, Q. Huang, A resistive fault current limiter based on high temperature superconductors. Appl. Supercond. 3, 469–482 (1995)

    Article  Google Scholar 

  4. V.L. Ginzburg, E.A. Andryushin, Superconductivity, Revised edn. World Scientific Pub. Co. Inc. (2004)

  5. G. Yildirim, Determination of optimum diffusion annealing temperature for Au surface-layered Bi-2212 ceramics and dependence of transition temperatures on disorders. J. Alloy. Compd. 699, 247–255 (2017)

    Article  Google Scholar 

  6. A.M. Hermann, J.V. Yakhmi eds., Thallium-Based High-Temperature Superconductors. (Marcel Dekker, New York, 1994)

    Google Scholar 

  7. N.K. Saritekin, M. Dogruer, Y. Zalaoglu, G. Yildirim, C. Terzioglu, O. Gorur, Filling of electronic density of states in Y-123 superconducting ceramics by nano Nd substitution on Ba site in crystal structure. J. Alloy. Compd. 659, 31–37 (2016)

    Article  Google Scholar 

  8. B. Batlogg, Cuprate superconductors: science beyond high Tc. Solid State Commun. 107, 639–647 (1998)

    Article  Google Scholar 

  9. O. Gorur, Y. Ozturk, G. Yildirim, M. Dogruer, C. Terzioglu, Sn diffusion coefficient and activation energy determined by way of XRD measurement and evaluation of micromechanical properties of Sn diffused YBa2Cu3O7–x superconducting ceramics. J. Mater. Sci.: Mater. El 24, 3063–3072 (2013)

    Google Scholar 

  10. N.K. Saritekin, M. Pakdil, E. Bekiroglu, G. Yildirim, Examination of effective nucleation centers for flux pinning of vortices and optimum diffusion annealing temperature for Au-diffusion-doped Bi-2212 polycrystalline compound. J. Alloy. Compd. 688, 637–646 (2016)

    Article  Google Scholar 

  11. S. Nagaya, N. Hirano, M. Naruse, T. Watanabe, T. Tamada, Development of a high-efficiency conduction cooling technology for SMES coils. IEEE T. Appl. Supercond. 23, 5602804–5602807 (2013)

    Article  Google Scholar 

  12. M. Runde, Application of high-Tc superconductors in aluminum electrolysis plants. IEEE T. Appl. Supercond. 5, 813–816 (1995)

    Article  Google Scholar 

  13. T.A. Coombs, A finite element model of magnetization of superconducting bulks using a solid-state flux pump. IEEE T. Appl. Supercond. 21, 3581–3586 (2011)

    Article  Google Scholar 

  14. F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol. 25, 014007 (2012)

    Article  Google Scholar 

  15. H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, Recycling failed bulk YBCO superconductors using the NdBCO/YBCO/MgO film-seeded top-seeded melt growth method. J. Appl. Phys. 111, 103910 (2012)

    Article  Google Scholar 

  16. K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, High and uniform critical current density for large-size YBa2Cu3O7–δ single crystals. Curr. Appl. Phys. 11, 1020–1023 (2011)

    Article  Google Scholar 

  17. W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, 2nd edn. (Wiley-VCH Verlag, Weinheim, 2004)

    Book  Google Scholar 

  18. H. Miao, M. Meinesz, B. Czabai, J. Parrell, S. Hong, Microstructure and Jc improvements in multifilamentary Bi-2212/Ag wires for high field magnet applications. AIP Conf. Proc. 986, 423–430 (2008)

    Article  Google Scholar 

  19. K. Koyama, S. Kanno, S. Noguchi, Electrical, Magnetic and superconducting properties of the quenched Bi2Sr2Ca1–XNdXCu2O8+y system. Jpn. J. Appl. Phys. 29, L53–L56 (1990)

    Article  Google Scholar 

  20. L. Zhou, P. Zhang, P. Ji, K. Wang, X. Wu, The properties of YBCO superconductors prepared by a new approach-the powder melting process. Supercond. Sci. Technol. 3, 490–492 (1990)

    Article  Google Scholar 

  21. K. Salama, V. Selymanickam, L. Gao, K. Sun, High-current density in bulk YBa2Cu3OX superconductor. Appl. Phys. Lett. 54, 2352–2354 (1989)

    Article  Google Scholar 

  22. T. Egi, J.G. Wen, K. Kuroda, H. Unoki, N. Koshizuka, High-current density of Nd(Ba,Nd)2Cu3O7–X single-crystal. Appl. Phys. Lett. 67, 2406–2408 (1995)

    Article  Google Scholar 

  23. S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. Van Dover, G.W. Kammlott, R.A. Fasrnacht, H.D. Keith, High critical currents in Y-Ba-Cu-O superconductors. Appl. Phys. Lett. 52, 2074–2076 (1988)

    Article  Google Scholar 

  24. J.M. Hur, K. Togano, A. Matsumoto, H. Kumakura, H. Wada, K. Kimura, Fabrication of high-performance MgB2 wires by an internal Mg diffusion process. Supercond. Sci. Technol. 21, 032001 (2008)

    Article  Google Scholar 

  25. P. Grathwohl, Diffusion in Natural Porous Media: Contaminant Transport, Sorption/desorption and Dissolution Kinetics. (Kluwer Academic, Boston, 1998

    Book  Google Scholar 

  26. N.K. Saritekin, H. Bilge, M.F. Kahraman, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, Improvement of mechanical characteristics and performances with Ni diffusion mechanism throughout Bi-2223 superconducting matrix. AIP Conf. Proc. 1722, 140002 (2016)

    Article  Google Scholar 

  27. N.K. Saritekin, M.F. Kahraman, H. Bilge, Y. Zalaoglu, M. Pakdil, M. Dogruer, G. Yildirim, M. Oz, Effect of Ni diffusion annealing temperature on crucial characterization of Bi-2223 superconducting system. AIP Conf. Proc. 1722, 140007 (2016)

    Article  Google Scholar 

  28. A. Fick, Ueber diffusion. Ann. der Physik 94, 59–86 (1855)

    Article  Google Scholar 

  29. G.B. Abdullaev, T.D. Dzhafarov, Atomic Diffusion in Semiconductor Structures, 2nd edn. (Harwood, Chur, 1987)

    Google Scholar 

  30. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena. (Wiley-Blackwell, New York, 1976

    Google Scholar 

  31. P.B. Allen, W.E. Pickett, H. Krakauer, Anisotropic normal-state transport-properties predicted and analyzed for high-Tc oxide superconductors. Phy. Rev. B 37, 7482–7490 (1988)

    Article  Google Scholar 

  32. D.M. Newns, P.C. Pattnaik, C.C. Tsuei, Role of vanhove singularity in high-temperature superconductors-Mean field. Phys. Rev. B 43, 3075–3084 (1991)

    Article  Google Scholar 

  33. S. Martin, M. Gurvitch, C.E. Rice, A.F. Hebard, P.L. Gammel, R.M. Fleming, A.T. Fiory, Nonlinear temperature-dependence of the normal-state resistivity in YBa2Cu4O8+/ −γ films. Phys. Rev. B 39, 9611–9613 (1989)

    Article  Google Scholar 

  34. J. Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing. (Oxford University Press, New York, 2006)

    Book  Google Scholar 

  35. M. Li, Y. Zhang, Y. Li, Y. Qi, Granular superconductivity in polycrystalline Bi2Sr2CaCu2O8 + γ by homovalent La substitution on Bi sites. J. Non-Cryst. Solids 356, 2831–2835 (2010)

    Article  Google Scholar 

  36. N.Y. Chen, R. Jonker, V.C. Matijasevic, H.M. Jaeger, J.E. Mooij, Low 1/f normal-state resistance noise in high-resistivity YBa2Cu3Oy films. Appl. Phys. Lett. 67, 133–135 (1995)

    Article  Google Scholar 

  37. F. Rullier-Albenque, P.A. Vieillefond, H. Alloul, A.W. Tyler, P. Lejay, J.F. Marucco, Universal Tc depression by irradiation defects in underdoped and overdoped cuprates. Europhys. Lett. 50, 81–87 (2000)

    Article  Google Scholar 

  38. M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, Investigation of Lu effect on YBa2Cu3O7–γ superconducting compounds. J. Mater. Sci: Mater. El 24, 896–905 (2013)

    Google Scholar 

  39. X. Xu, J.H. Kim, S.X. Dou, S. Choi, J.H. Lee, H.W. Park, M. Rindfleish, M. Tomsic, A correlation between transport current density and grain connectivity in MgB2/Fe wire made from ball-milled boron. J. Appl. Phys. 105, 103913 (2009)

    Article  Google Scholar 

  40. R. Awad, A.I. Abou-Aly, M.M.H. Abdel Gawad, I. G-Eldeen, The influence of SnO2 nano-particles addition on the vickers microhardness of (Bi, Pb)-2223 superconducting phase. J. Supercond. Nov. Magn. 25, 739–745 (2012)

    Article  Google Scholar 

  41. D.M. Rao, T. Somaiah, V. Haribabu, Y.C. Venudhar, Growth-kinetics of high-Tc and low-Tc phases in Bi2 – xPbxCa2Sr2Cu3Oy superconducting compounds. Cryst. Res. Technol. 28, 285–298 (1993)

    Article  Google Scholar 

  42. A. Ianculescu, M. Gartner, B. Despax, V. Bley, Th Lebey, R. Gavrila, M. Modreanu, Optical characterization and microstructure of BaTiO3 thin films obtained by RF-magnetron sputtering. Appl. Surf. Sci. 253, 344–348 (2006)

    Article  Google Scholar 

  43. X.L. Lin, S.S. Ma, H.Y. Wang, H. Xu, Characteristics of hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Phys. Sin 56, 2852–2857 (2007)

    Google Scholar 

  44. G. Yildirim, Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles. J. Alloy. Compd. 578, 526–535 (2017)

    Article  Google Scholar 

  45. H. Eskes, G.A. Sawatzky, Tendency towards local spin compensation of holes in the high-Tc copper-compounds. Phys. Rev. Lett. 61, 1415–1418 (1988)

    Article  Google Scholar 

  46. M. Pakdil, E. Bekiroglu, M. Oz, N.K. Saritekin, G. Yildirim, Role of preparation conditions of Bi-2223 ceramic materials and optimization of Bi-2223 phase in bulk materials with experimental and statistical approaches. J. Alloy. Compd. 673, 205–214 (2016)

    Article  Google Scholar 

  47. M. Kakihana, M. Osada, M. Kall, L. Borjesson, H. Mazaki, H. Yasuoka, M. Yashima, M. Yoshimura, Raman-active phonons in Bi2Sr2Ca1–xYxCu2O8+d(x = 0–1): Effects of hole filling and internal pressure induced by Y doping for Ca, and implications for phonon assignments. Phy. Rev. B 53, 11796–11806 (1996)

    Article  Google Scholar 

  48. M. Dogruer, O. Gorur, F. Karaboga, G. Yildirim, C. Terzioglu, Zr diffusion coefficient and activation energy calculations based on EDXRF measurement and evaluation of mechanical characteristics of YBa2Cu3O7–x bulk superconducting ceramics diffused with Zr nanoparticles. Powder Technol. 246, 553–560 (2013)

    Article  Google Scholar 

  49. M. Dogruer, G. Yildirim, E. Yucel, C. Terzioglu, Role of diffusion-annealing temperature on the microstructural and superconducting properties of Cu-doped MgB2 superconductors. J. Supercond. Nov. Magn. 23, 1965–1970 (2012)

    Google Scholar 

Download references

Acknowledgements

This study is totally supported by Abant Izzet Baysal University Scientific Research Project Coordination Unit (Project No: 2014.09.05.685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Zalaoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalaoglu, Y., Terzioglu, C., Turgay, T. et al. Detailed survey on minimum activation energy for penetration of Ni nanoparticles into Bi-2223 crystal structure and temperature-dependent Ni diffusivity. J Mater Sci: Mater Electron 29, 3239–3249 (2018). https://doi.org/10.1007/s10854-017-8259-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8259-6

Navigation